【题目】已知函数,.
(1)求函数图像在处的切线方程;
(2)证明:;
(3)若不等式对于任意的均成立,求实数的取值范围.
【答案】(1);(2)证明见解析;(3).
【解析】试题分析:(1)利用导数的几何意义求曲线在点处的切线方程,注意这个点的切点,利用导数的几何意义求切线的斜率;(2)利用导数方法证明不等式在区间上恒成立的基本方法是构造函数,然后根据函数的单调性,或者函数的最值证明函数,其中一个重要的技巧就是找到函数在什么地方可以等于零,这往往就是解决问题的一个突破口,观察式子的特点,找到特点证明不等式;(3)对于恒成立的问题,常用到两个结论:(1)恒成立,(2)恒成立.
试题解析:(1) , 又由,
得切线,即
(2)设,则,令得
1 | |||
极大值 | |||
0 |
,即.
(3),,.
当时,;
当时,,不满足不等式;
当时,设,,令,得
极大值 | |||
0 |
综上
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px(p>0)的焦点为F,点K(-1,0)为直线l与抛物线C准线的交点,直线l与抛物线C相交于A,B两点.
(1)求抛物线C的方程;
(2)设·=,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现从某学校高一年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于和之间,将测量结果按如下方式分成6组:第1组,第2组,…,第6组,下图是按上述分组方法得到的频率分布直方图.
(1)求这50名男生身高的中位数,并估计该校高一全体男生的平均身高;
(2)求这50名男生当中身高不低于176的人数,并且在这50名身高不低于176的男生中任意抽取2人,求这2人身高都低于180的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有下列命题:(1)终边相同的角的同名三角比的值相等;(2)终边不同的角的同名三角比的值不同;(3)若,则是第一或第二象限角;(4)△中,若,则;其中正确命题的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】进入12月以来,某地区为了防止出现重污染天气,坚持保民生、保蓝天,严格落实机动车限行等一系列“管控令”.该地区交通管理部门为了了解市民对“单双号限行”的赞同情况,随机采访了220名市民,将他们的意见和是否拥有私家车情况进行了统计,得到如下的列联表:
赞同限行 | 不赞同限行 | 合计 | |
没有私家车 | 90 | 20 | 110 |
有私家车 | 70 | 40 | 110 |
合计 | 160 | 60 | 220 |
(1)根据上面的列联表判断,能否在犯错误的概率不超过0.001的前提下认为“是否赞同限行与是否拥有私家车”有关;
(2)为了了解限行之后是否对交通拥堵、环境污染起到改善作用,从上述调查的不赞同限行的人员中按分层抽样抽取6人,再从这6人中随机抽出3名进行电话回访,求3人中至少抽到1名“没有私家车”人员的概率.
附:.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某经济开发区规划要修建一地下停车场,停车场横截面是如图所示半椭圆形AMB,其中AP为2百米,BP为4百米,,M为半椭圆上异于A,B的一动点,且面积最大值为平方百米,如图建系.
求出半椭圆弧的方程;
若要将修建地下停车场挖出的土运到指定位置P处,N为运土点,以A,B为出口,要使运土最省工,工程部需要指定一条分界线,请求出分界线所在的曲线方程;
若在半椭圆形停车场的上方修建矩形商场,矩形的一边CD与AB平行,设百米,试确定t的值,使商场地面的面积最大.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com