精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)求函数图像在处的切线方程;

2)证明:

3)若不等式对于任意的均成立,求实数的取值范围.

【答案】1;(2)证明见解析;(3

【解析】试题分析:(1)利用导数的几何意义求曲线在点处的切线方程,注意这个点的切点,利用导数的几何意义求切线的斜率;(2)利用导数方法证明不等式在区间上恒成立的基本方法是构造函数,然后根据函数的单调性,或者函数的最值证明函数,其中一个重要的技巧就是找到函数在什么地方可以等于零,这往往就是解决问题的一个突破口,观察式子的特点,找到特点证明不等式;(3)对于恒成立的问题,常用到两个结论:(1恒成立,(2恒成立

试题解析:(1 又由

得切线,即

2)设,则,令



1




极大值




0


,即

3

时,

时,不满足不等式;

时,设,令,得







极大值




0


综上

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0)的焦点为F,点K(-1,0)为直线l与抛物线C准线的交点,直线l与抛物线C相交于A,B两点.

(1)求抛物线C的方程;

(2)设·,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现从某学校高一年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于之间,将测量结果按如下方式分成6组:第1组,第2组,…,第6组,下图是按上述分组方法得到的频率分布直方图.

(1)求这50名男生身高的中位数,并估计该校高一全体男生的平均身高;

(2)求这50名男生当中身高不低于176的人数,并且在这50名身高不低于176的男生中任意抽取2人,求这2人身高都低于180的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列命题:(1)终边相同的角的同名三角比的值相等;(2)终边不同的角的同名三角比的值不同;(3)若,则是第一或第二象限角;(4中,若,则;其中正确命题的个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,若函数内有两个极值点,则实数的取值范围是( )

A. B. (0,1)

C. (0,2) D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】进入12月以来,某地区为了防止出现重污染天气,坚持保民生、保蓝天,严格落实机动车限行等一系列“管控令”.该地区交通管理部门为了了解市民对“单双号限行”的赞同情况,随机采访了220名市民,将他们的意见和是否拥有私家车情况进行了统计,得到如下的列联表:

赞同限行

不赞同限行

合计

没有私家车

90

20

110

有私家车

70

40

110

合计

160

60

220

(1)根据上面的列联表判断,能否在犯错误的概率不超过0.001的前提下认为“是否赞同限行与是否拥有私家车”有关;

(2)为了了解限行之后是否对交通拥堵、环境污染起到改善作用,从上述调查的不赞同限行的人员中按分层抽样抽取6人,再从这6人中随机抽出3名进行电话回访,求3人中至少抽到1名“没有私家车”人员的概率.

附:.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个极值点 ).

(1)求实数的取值范围;

(2)设,若函数的两个极值点恰为函数的两个零点,当时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】内有一点P(-1,2),AB为过点P且倾斜角为的弦.

(1)当时,求AB的长;

(2)当弦AB被点P平分时,写出直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某经济开发区规划要修建一地下停车场,停车场横截面是如图所示半椭圆形AMB,其中AP为2百米,BP为4百米,M为半椭圆上异于AB的一动点,且面积最大值为平方百米,如图建系.

求出半椭圆弧的方程;

若要将修建地下停车场挖出的土运到指定位置P处,N为运土点,以A,B为出口,要使运土最省工,工程部需要指定一条分界线,请求出分界线所在的曲线方程;

若在半椭圆形停车场的上方修建矩形商场,矩形的一边CDAB平行,设百米,试确定t的值,使商场地面的面积最大.

查看答案和解析>>

同步练习册答案