精英家教网 > 高中数学 > 题目详情
17.已知点P在函数$f(x)=ln({2x+1})+\frac{{{x^2}+x}}{8}$图象上,则函数f(x)在点P处切线倾斜角α的取值范围(  )
A.$[{\frac{π}{4},\frac{π}{2}})$B.$[{\frac{π}{4},\frac{3π}{4}}]$C.$[{\frac{π}{4},π})$D.$[{0,\frac{π}{4}}]$

分析 求出函数的导数,求得切线的斜率,由基本不等式可得切线的斜率的范围,由直线的斜率公式,结合正切函数的图象和直线的倾斜角的范围,即可得到所求范围.

解答 解:函数$f(x)=ln({2x+1})+\frac{{{x^2}+x}}{8}$的导数为f′(x)=$\frac{2}{2x+1}$+$\frac{1}{8}$(2x+1),
由2x+1>0,可得$\frac{2}{2x+1}$+$\frac{1}{8}$(2x+1)≥1,
当且仅当2x+1=4,即x=$\frac{3}{2}$时,取得最小值1.
即有曲线在点(x,y)处切线的斜率k≥1,
即有tanα≥1(α为倾斜角),
则有$\frac{π}{4}$≤α<$\frac{π}{2}$.
故选A.

点评 本题考查导数的运用:求切线的斜率,考查直线的倾斜角的范围,同时考查基本不等式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.曲线C1的参数方程为$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$(α为参数)在以原点O为极点,x轴的非负半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρcos2θ=sinθ.
(1)求曲线C1的极坐标方程和曲线C2的直角坐标方程;
(2)过原点且倾斜角为α($\frac{π}{6}$<α≤$\frac{π}{4}$)的射线l与曲线C1,C2分别相交于A,B两点(A,B异于原点),求|OA|•|OB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若α是第四象限,则180°-α是第三象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx-ax-$\frac{1}{2}{x^3}({a∈R})$.
(1)若曲线y=f(x)在点(1,f(1))处的切线经过点$({3,\frac{9}{2}})$,求a的值;
(2)若f(x)在(1,2)上存在极值,求a的取值范围;
(3)当x>0时,f(x)<0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.阅读下面两个算法语句:执行图1中语句的结果是输出i=4;    执行图2中语句的结果是输出i=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点,若正方形OABC的边长为2,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在以O为极点的极坐标系中,曲线ρ=2cosθ和直线ρcosθ=a相交于A,B两点.若△AOB是等边三角形,则a的值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若(x+2)n=xn+axn-1+…+bx+c(n∈N*,n≥3),且b=4c,则a的值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.(x+$\frac{1}{x}$+2)5的展开式中整理后的常数项为252.

查看答案和解析>>

同步练习册答案