(本小题满分13分)
已知数列{an}中,a2=p(p是不等于0的常数),Sn为数列{an}的前n项和,若对任意的正整数n都有Sn=.
(1)证明:数列{an}为等差数列;(2)记bn=+,求数列{bn}的前n项和Tn;
(3)记cn=Tn-2n,是否存在正整数N,使得当n>N时,恒有cn∈(,3),若存在,请证明你的结论,并给出一个具体的N值;若不存在,请说明理由.
解析:(1)由S1=a1==0得a1=0,
当n≥2时,an=Sn-Sn-1=-an-1,故(n-2)an=(n-1)an-1,
故当n>2时,an=an-1=··…····a2=(n-1)p,由于n=2时a2=p,n=1时a1=0,也适合该式,故对一切正整数n,an=(n-1)p,an+1-an=p,由于p是常数,故数列{an}为等差数列.
(2)Sn==,
bn=+=+=2+2(-),
∴Tn=2n+2(1-+-+-+-+…+-+-)
=2n+2(1+--)
=2n+3-2(+).
(3)cn=Tn-2n=3-2(+)<3对所有正整数n都成立;
若cn>,即3-2(+)>⇒+<,记f(n)=+,则f(n)单调递减,又f(6)=+>+=,f(7)=+<+=,故只要取N=6,则当n>N时,f(n)<.故存在正整数N,使得当n>N时,恒有cn∈(,3).N可以取所有不小于6的正整数.
【解析】略
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数.
(1)求函数的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数在区间上的图象.
(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为的函数是奇函数.
(1)求的值;(2)判断函数的单调性;
(3)若对任意的,不等式恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱的所有棱长都为2,为的中点。
(Ⅰ)求证:∥平面;
(Ⅱ)求异面直线与所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知为锐角,且,函数,数列{}的首项.
(1) 求函数的表达式;
(2)在中,若A=2,,BC=2,求的面积
(3) 求数列的前项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com