解答:解:在AC上取中点E,则可得
+=2且DE平分AC
由
+=λ(λ∈R),
∴B,D,E三点共线
∵BD是∠ABC的平分线
∴BE垂直平分AC,DA=DC
∴△ABC是等腰三角形,且BA=BC,故①正确②不正确
必有f(1)=f(3),f(1)≠f(2);
①当f(1)=f(3)=1时,f(2)=2、3、4,三种情况.
②f(1)=f(3)=2;f(2)=1、3、4,有三种.
③f(1)=f(3)=3;f(2)=2、1、4,有三种.
④f(1)=f(3)=4;f(2)=2、3、1,有三种.
因而满足条件的函数f(x)有12种.故④正确
由以上情况的讨论可知,A,B,C的坐标情况如下
A(1,1),B(2,2),C(3,1),AB=
,AC=2;A(1,1),B(2,3),C(3,1),AB=
,AC=2;A(1,1),B(2,4),C(3,1),AB=
,AC=2;A(1,2),B(2,1),C(3,2),AB=
,AC=2;A (1,2),B(2,3),C(3,2),
AB=
,AC=2;A(1,2),B(2,4),C(3,2),AB=
,AC=2;A(1,3),B(2,2),C(3,3),AB=
,AC=2;
A(1,3),B(2,1),C(3,3),AB=
,AC=2;A(1,3),B(2,4),C(3,3),AB=
,AC=2;A(1,4),B(2,2),C(3,4),AB=
,AC=2;A(1,4),B(2,3),C(3,4),AB=
,AC=2;A(1,4),B(2,1),C(3,4),AB=
,AC=2
∵BE垂直平分AC,DA=DC
∴
+=2由角平分线性质可得,
==
,根据以上情况可求得λ有3个情况,故③正确
故答案为:①③④