精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图象的一条对称轴为,其中为常数,且,给出下述四个结论:

①函数的最小正周期为

②将函数的图象向左平移所得图象关于原点对称;

③函数在区间,上单调递增;

④函数在区间上有个零点.

其中所有正确结论的编号是(

A.①②B.①③C.①③④D.①②④

【答案】C

【解析】

根据函数的一条对称轴是,且,算出,进而求出最小正周期,即可判断①;写出将函数的图象向左平移个单位后的式子,即可判断②;当时,,进而判断③;由,得,解得,由,得,进而判断④.

解:当时,

,又因为,所以

函数的最小正周期,①正确;

将函数的图象向左平移

显然的图象不关于原点对称,②错误;

时,

所以在区间上单调递增,③正确;

,得,解得

,得

因为,所以

所以函数在区间上有个零点,④正确.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四棱锥,底面ABCD是边长为1的正方形,,平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为(

A.B.C.D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,集合

1)若集合中有且仅有个整数,求实数的取值范围;

2)集合,若存在实数,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大以来,国家深入推进精准脱贫,加大资金投入,强化社会帮扶,为了更好的服务于人民,派调查组到某农村去考察和指导工作.该地区有100户农民,且都从事水果种植,据了解,平均每户的年收入为2万元.为了调整产业结构,调查组和当地政府决定动员部分农民从事水果加工,据估计,若能动员户农民从事水果加工,则剩下的继续从事水果种植的农民平均每户的年收入有望提高,而从事水果加工的农民平均每户收入将为万元.

1)若动员户农民从事水果加工后,要使从事水果种植的农民的总年收入不低于动员前从事水果种植的农民的总年收入,求的取值范围;

2)在(1)的条件下,要使这100户农民中从事水果加工的农民的总收入始终不高于从事水果种植的农民的总收入,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为椭圆的左、右焦点,离心率为,点在椭圆上.

1)求椭圆的方程;

2)过的直线分别交椭圆于,且,问是否存在常数,使得成等差数列?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点,直线的参数方程为为参数),以为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为

时,判断直线与曲线的位置关系;

若直线与曲线相切于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若三角形三边长都是整数且至少有一个内角为,则称该三角形为完美三角形.有关完美三角形有以下命题:

1)存在直角三角形是完美三角形

2)不存在面积是整数的完美三角形

3)周长为12完美三角形中面积最大为

4)若两个完美三角形有两边对应相等,且它们面积相等,则这两个完美三角形全等.

以上真命题有______.(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某饮品店提供两种口味的饮料,且每种饮料均有大杯、中杯、小杯三种容量.甲、乙二人各随机点一杯饮料,且甲只点大杯,乙点中杯或小杯,则甲、乙所点饮料的口味相同的概率为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数的最小值为2,求的值;

2)当时,证明:

查看答案和解析>>

同步练习册答案