精英家教网 > 高中数学 > 题目详情
下列命题:①已知函数y=f(x)在区间[a,b]上连续,且f(a)f(b)<0,则y=f(x)在[a,b]上零点个数一定为1个;
②定义在R上的奇函数f(x)必满足f(0)=0;
③f(x)=(2x+1)2-2(2x-1)既不是奇函数又不是偶函数;
A=R,B=R,f:x→y=
1
x+1
,则f为A到B的映射;
f(x)=
1
x
在定义域上是减函数.
其中真命题的序号是
 
(把你认为正确的命题的序号都填上).
分析:逐一检验各个选项的正确性,通过给变量取特殊值,举反例可以排除某些选项.
解答:解:①不正确,如f(x)=x(x-1)(x-2)在区[-1,3]上上连续,且f(-1)f(3)<0,f(x)在[-1,3]上的零点
有3个,零点个数为 3.
②正确,按照奇函数的定义,f(0)=f(-0)=-f(0),∴2f(0)=0,故 f(0)=0.
③不正确,∵f(x)=(2x+1)2-2(2x-1)=4x2-1,定义域为R,关于原点对称,f(-x)=f(x),
是一个偶函数.
④不正确,因为前一个集合中的-1在后一个集合中没有元素与之对应,故不是映射.
⑤不正确,因为当x=-1时 y=-1,当 x=1 时,y=1,1>-1,故 y=
1
x
 在其定义域内不是减函数.
综上,只有②正确,
故答案为②.
点评:本题考查函数零点的个数判断、映射的定义、函数的单调性的判断、函数的奇偶性和单调性,通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在下列命题中:①已知两条不同直线m、n两上不同平面α,β,m⊥α,n⊥β,m⊥n,则α⊥β;②函数y=sin(2x-
π
6
)图象的一个对称中心为点(
π
3
,0);③若函数f(x)在R上满足f(x+1)=
1
f(x)
,则f(x)是周期为2的函数;④在△ABC中,若
OA
+
OB
=2
CO
,则S△ABC=S△BOC其中正确命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①、已知函数y=f(x).(x∈R),则y=f(x-1)的图象与y=f(1-x)的图象关于直线x=1对称;
②、设函数f(x)=cos(x+φ),则“f(x)为偶函数”的充要条件是“f'(0)=0”;
③、等比数列{an}的前n项和为Sn,则“公比q>0”是“数列{Sn}单增”的充要条件;
④、实数x,y,则“
x-y≥0
y≥0
x+y≤2
”是“|2y-x|≤2”的充分不必要条件.
其中真命题有
①②④
①②④
(写出你认为正确的所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源:2011年四川省绵阳中学高考适应性检测数学试卷(理科)(解析版) 题型:填空题

给出下列命题:
①、已知函数y=f(x).(x∈R),则y=f(x-1)的图象与y=f(1-x)的图象关于直线x=1对称;
②、设函数f(x)=cos(x+φ),则“f(x)为偶函数”的充要条件是“f'(0)=0”;
③、等比数列{an}的前n项和为Sn,则“公比q>0”是“数列{Sn}单增”的充要条件;
④、实数x,y,则“”是“|2y-x|≤2”的充分不必要条件.
其中真命题有    (写出你认为正确的所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

给出下列命题:
①、已知函数y=f(x).(x∈R),则y=f(x-1)的图象与y=f(1-x)的图象关于直线x=1对称;
②、设函数f(x)=cos(x+φ),则“f(x)为偶函数”的充要条件是“f'(0)=0”;
③、等比数列{an}的前n项和为Sn,则“公比q>0”是“数列{Sn}单增”的充要条件;
④、实数x,y,则“数学公式”是“|2y-x|≤2”的充分不必要条件.
其中真命题有________(写出你认为正确的所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源:2010年山东省高考数学模拟试卷1(文科)(解析版) 题型:解答题

在下列命题中:①已知两条不同直线m、n两上不同平面α,β,m⊥α,n⊥β,m⊥n,则α⊥β;②函数y=sin(2x-)图象的一个对称中心为点(,0);③若函数f(x)在R上满足f(x+1)=,则f(x)是周期为2的函数;④在△ABC中,若,则S△ABC=S△BOC其中正确命题的序号为   

查看答案和解析>>

同步练习册答案