如图所示,已知椭圆的方程为 ,A为椭圆的左顶点,B,C在椭圆上,若四边形OABC为平行四边形,且∠OAB=45°,则椭圆的离心率等于( )
A. B. C. D.
C
【解析】
试题分析:由图形知|BC|=a,且BC∥OA由椭圆的对称性知,B,C两点关于y轴对称,由此可以求出两点的坐标,再连接OC,有∠OAB=45°及平行的性质,椭圆的对称性,令椭圆的右端点为M,则有∠COM=∠CMO=∠OAB=45°由此可得CO垂直于MC,故有
又四边形OABC为平行四边形,B,C在椭圆上,由图形知|BC|=a,且BC∥OA由椭圆的对称性知,B,C两点关于y轴对称,故C的横坐标为 ,代入椭圆方程中,则有,那么代入上式可知a2=3b2,故可得c2=2b2,所以椭圆的离心率等于,选C
考点:椭圆的简单性质
点评:本题考查椭圆的简单性质,求解本题的关键是根据椭圆的对称性得出点C的坐标以及图形中的垂直关系,求出点C的坐标是为了表示出斜率,求出垂直关系是为了利用斜率的乘积为-1建立方程,然后再根据求离心率的公式求出离心率即可.本题比较抽象,方法单一,入手较难,运算量不大
科目:高中数学 来源: 题型:
x2 |
a2 |
y2 |
b2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
如图所示,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的3倍且经过点M(3,1).平行于OM的直线l在y轴上的截距为m(m≠0),且交椭圆于A,B两不同点.
(1)求椭圆的方程;
(2)求m的取值范围;
查看答案和解析>>
科目:高中数学 来源:2012-2013学年江西省赣州市十二县(市)高二(下)期中数学试卷(理科)(解析版) 题型:选择题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com