精英家教网 > 高中数学 > 题目详情
用0、1、2、3、4、5六个数字组成无重复数字的四位数,问:(1)偶数有多少个?(2)大于3125的有多少个?(以数字作答)
分析:(1)当末位是数字0时,可以组成A53个数字;当末位不是0时,末位可以是2,4,有两种选法,首位有4种选法,中间两位可以从余下的4个数字中选两个,共有C21C41A42种结果,
根据计数原理得到结果.
(2)把满足条件的无重复数字的四位数分成3类:①当千位是3,百位是1的;②当千位是3,百位不是1的;③千位是4或5的.求出每一类的无重复数字的四位数的个数,
相加即得所求.
解答:解:(1)本题需要分类来解,
当末位是数字0时,可以组成A53=60个,
当末位不是0时,末位可以是2,4,有两种选法,
首位有4种选法,中间两位可以从余下的4个数字中选两个,共有C21C41A42=96种结果,
根据分类计数原理知共有60+96=156种结果,
(2)把满足条件的无重复数字的四位数分成3类:
当千位是3,百位是1时,十位应从4或5中选一个,有2种方法;个位从剩下的3个数中任选一个,有3种方法,根据分布计数原理,这样的数共有2×3=6个.
当千位是3,百位不是1时,百位只能从2、4、5中选一个,个位和个位任意选,这样的数共有C31•A42=36个.
当千位是4或5时,其它的位任意选,共有C21•A53=120个.
根据分类计数原理,大于3125的有6+36+120=162个.
点评:本题主要考查排列、组合以及简单计数原理的应用,体现了分类讨论的数学思想.数字问题是排列中经常见到问题,条件变换多样,把排列问题包含在数字问题中,解题的关键是看清题目的实质,注意数字0的双重限制,即可在最后一位构成偶数,又不能放在首位.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、用0、1、2、3、4、5这六个数字组成无重复数字的六位数,其中个位数字小于十位数字的六位数的个数是多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:

用0、1、2、3、4、5这6个数字,可以组成无重复数字的五位偶数的个数为
312
312
(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

用0,1,2,3,4,5这六个数字,组成四位数.
( I)可以组成多少没有重复数字的四位数?
( II)可组成多少个恰有两个相同数字的四位数?

查看答案和解析>>

科目:高中数学 来源: 题型:

用0、1、2、3、4、5这六个数字,组成没有重复数字的六位数.
(1)这样的六位奇数有多少个?
(2)数字5不在个位的六位数共有多少个?
(3)数字1和2不相邻,这样的六位数共有多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:

用0,1,2,3,4这五个数字组成没有重复数字的五位数中,奇数的个数是(  )
A、24B、36C、48D、72

查看答案和解析>>

同步练习册答案