精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱中,底面为直角三角形,,点是线段上一动点,则的最小值是( )

A. B. C. D.

【答案】B

【解析】

A1B,沿BC1将△CBC1展开与△A1BC1在同一个平面内,不难看出CP+PA1的最小值是A1C的连线.(在BC1上取一点与A1C构成三角形,因为三角形两边和大于第三边)由余弦定理即可求解.

A1B,沿BC1将△CBC1展开与△A1BC1在同一个平面内,

连接A1C,长度即是所求.

∵直三棱柱ABCA1B1C1中,底面为直角三角形,∠ACB90°,AC6BCCC1

∴矩形BCC1B1是边长为的正方形;则BC12

另外A1C1AC6

在矩形ABB1A1中,A1B1ABBB1,则A1B

易发现62+2240,即A1C12+BC12A1B2

∴∠A1C1B90°,则∠A1C1C135°

A1C

故答案为:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l1:x-2y+3=0与直线l2:2x+3y-8=0的交点为M,

(1)求过点M且到点P(0,4)的距离为2的直线l的方程;

(2)求过点M且与直线l3:x+3y+1=0平行的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C1的方程为x2+(y+1)2=4,圆C2的圆心坐标为(2,1).

(1)若圆C1与圆C2相交于AB两点,且|AB|=,求点C1到直线AB的距离;

(2)若圆C1与圆C2相内切,求圆C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直二面角中,四边形是边长为2的正方形,上的点,且平面.

(1)求证:

(2)求二面角的余弦值;

(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015年推出一种新型家用轿车,购买时费用为16.9万元,每年应交付保险费、养路费及汽油费共1.2万元,汽车的维修费为:第一年无维修费用,第二年为0.2万元,从第三年起,每年的维修费均比上一年增加0.2万元.

(I)设该辆轿车使用n年的总费用(包括购买费用、保险费、养路费、汽油费及维修费)为f(n),求f(n)的表达式;

(II)这种汽车使用多少报废最合算(即该车使用多少年,年平均费用最少)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.
(1)求B;
(2)若b=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆的方程为点的坐标为.

(1)求过点且与圆相切的直线方程;

(2)过点任作一条直线与圆交于不同两点,且圆轴正半轴于点,求证:直线的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三角形所在的平面与长方形所在的平面垂直,.点边的中点,点分别在线段上,且.

(1)证明:

(2)求二面角的正切值;

(3)求直线与直线PG所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了了解高中生的艺术素养,从学校随机选取男,女同学各50人进行研究,对这100名学生在音乐、美术、戏剧、舞蹈等多个艺术项目进行多方位的素质测评,并把调查结果转化为个人的素养指标,制成下图,其中“*”表示男同学,“+”表示女同学.

,则认定该同学为“初级水平”,若,则认定该同学为“中级水平”,若,则认定该同学为“高级水平”;若,则认定该同学为“具备一定艺术发展潜质”,否则为“不具备明显艺术发展潜质”.

(I)从50名女同学的中随机选出一名,求该同学为“初级水平”的概率;

(Ⅱ)从男同学所有“不具备明显艺术发展潜质的中级或高级水平”中任选2名,求选出的2名均为“高级水平”的概率;

(Ⅲ)试比较这100名同学中,男、女生指标的方差的大小(只需写出结论).

查看答案和解析>>

同步练习册答案