精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,已知以O为圆心的圆与直线l:y=mx+(3-4m),(m∈R)恒有公共点,且要求使圆O的面积最小.
(1)写出圆O的方程;
(2)圆O与x轴相交于A、B两点,圆内动点P使|
PA
|
|
PO
|
|
PB
|
成等比数列,求
PA
PB
的范围;
(3)已知定点Q(-4,3),直线l与圆O交于M、N两点,试判断
QM
QN
×tan∠MQN
是否有最大值,若存在求出最大值,并求出此时直线l的方程,若不存在,给出理由.
(1)因为直线l:y=mx+(3-4m)过定点T(4,3)
由题意,要使圆O的面积最小,定点T(4,3)在圆上,
所以圆O的方程为x2+y2=25.
(2)A(-5,0),B(5,0),设P(x0,y0),则x02+y02<25 ①
PA
=(-5-x0,-y0)
PB
=(5-x0,-y0)

|
PA
|,|
PO
|,|
PB
|
成等比数列得,|
PO
|2=|
PA
|•|
PB
|

x20
+
y20
=
(x0+5)2+
y20
(x0-5)2+
y20
,整理得:
x20
-
y20
=
25
2
,即
x20
=
25
2
+
y20

由①②得:0≤
y20
25
4
PA
PB
=(
x20
-25)+
y20
=2
y20
-
25
2
,∴
PA
PB
∈[-
25
2
,0)

(3)
QM
QN
×tan∠MQN=|
QM
|•|
QN
|cos∠MQN×tan∠MQN

=|
QM
|•|
QN
|sin∠MQN=2S△MQN

由题意,得直线l与圆O的一个交点为M(4,3),又知定点Q(-4,3),
直线lMQ:y=3,|MQ|=8,则当N(0,-5)时S△MQN有最大值32.
QM
QN
×tan∠MQN
有最大值为64,
此时直线l的方程为2x-y-5=0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知圆
(Ⅰ)若直线过定点 (1,0),且与圆相切,求的方程;
(Ⅱ) 若圆的半径为3,圆心在直线上,且与圆外切,求圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C:x2+y2+2x-4y+3=0
(1)若圆Q的圆心在直线y=x+3上,半径为
2
,且与圆C外切,求圆Q的方程;
(2)若圆C的切线在x轴,y轴上的截距相等,求此切线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点P(2,0),及⊙C:x2+y2-6x+4y+4=0.
(1)当直线l1过点P且与⊙C的圆心的距离为1时,求直线l1的方程;
(2)设l2:x+y-2=0交⊙C于A、B两点,求以线段AB为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知实数r是常数,如果M(x0,y0)是圆x2+y2=r2外的一点,那么直线x0x+y0y=r2与圆x2+y2=r2的位置关系是(  )
A.相交B.相切C.相离D.都有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线y=kx+1被圆x2+(y-1)2=2所截得的弦AB的长等于(  )
A.2B.4C.
2
D.2
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知⊙M:x2+(y-2)2=1,Q是x轴上的动点,QA、QB分别切⊙M于A、B两点.
(1)如果|AB|=
4
2
3
,求直线MQ的方程;
(2)求动弦AB的中点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

圆拱桥的一孔圆拱如图所示,该圆拱是一段圆弧,其跨度AB=20米,拱高OP=4米,在建造时每隔4米需用一根支柱支撑.
(1)建立适当的坐标系,写出圆弧的方程;
(2)求支柱A2B2的高度(精确到0.01米).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设m,n∈R,若直线l:mx+ny-1=0与x轴相交于点A,与y轴相交于点B,且l与圆x2+y2=4相交所得弦的长为2,O为坐标原点,则△AOB面积的最小值为________.

查看答案和解析>>

同步练习册答案