精英家教网 > 高中数学 > 题目详情
7.在(2x-$\frac{1}{4x}$)5的展开式中,含x3项的系数为-20.(用数字作答)

分析 在二项展开式的通项公式中,令x的幂指数等于03,求出r的值,即可求得x3项的系数.

解答 解:二项式${({2x-\frac{1}{4x}})^5}$的展开式的通项公式为Tr+1=${C}_{5}^{r}$•25-r•${(-\frac{1}{4})}^{r}$•x5-2r
令5-2r=3,求得 r=1,∴含 x3项的系数为${C}_{5}^{1}$•16•(-$\frac{1}{4}$)=-20,
故答案为:-20.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知F1,F2分别是双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{9}=1(a>0)$的左右焦点,点P是双曲线上任一点,且||PF1|-|PF2||=2,顶点在原点且以双曲线的右顶点为焦点的抛物线为L.
(Ⅰ)求双曲线C的渐近线方程和抛物线L的标准方程;
(Ⅱ)过抛物线L的准线与x轴的交点作直线,交抛物线于M、N两点,问直线的斜率等于多少时,以线段MN为直径的圆经过抛物线L的焦点?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),x>0}\\{-{x}^{2}-2x,x≤0}\end{array}\right.$的零点个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=3tan(2x+$\frac{5π}{6}$)的最小正周期为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设函数f(x)=$\left\{\begin{array}{l}{2-lo{g}_{2}(4-x).x<0}\\{{2}^{x-1},x≥0}\end{array}\right.$则f(log214)+f(-4)的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a=3e,b=πe,c=π3,其中e=2.71828…为自然对数的底数,则a,b,c的大小关系是(  )
A.a>c>bB.a>b>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.动点P,Q从点A(1,0)出发沿单位圆运动,点P按逆时针方向每秒钟转$\frac{π}{3}$弧度,点Q按顺时针方向每秒钟转$\frac{π}{6}$弧度,设P,Q第一次相遇时在点B,则B点的坐标为(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和,${S_n}=\frac{{3{n^2}-n}}{2}$.
(1)求{an}的通项公式;
(2)设${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,数列{bn}的前n项和为Tn,若对?n∈N*,t≤4Tn恒成立,求实数t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,若a=2,b+c=7,$cosB=-\frac{1}{4}$.
(1)求b的值;
(2)求△ABC的面积.

查看答案和解析>>

同步练习册答案