精英家教网 > 高中数学 > 题目详情
10.已知集合M={0,2,zi},i为虚数单位,N={1,3},M∩N={1},则复数z=(  )
A.-iB.iC.-2iD.2i

分析 由M,N,以及两集合的交集,确定出复数z即可.

解答 解:∵M={0,2,zi},i为虚数单位,N={1,3},M∩N={1},
∴zi=1,
则z=-i.
故选:A.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若x,y满足约束条件$\left\{\begin{array}{l}x+y-5≤0\\ 2x-y-1≥0\\ x-2y+1≤0\end{array}\right.$,则z=x+y的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,在正方体ABC的-A1B1C1D1中,点P是线段A1C1上的动点,则三棱锥P-BCD的俯视图与正视图面积之比的最大值为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若复数z满足(3-4i+z)i=2+i,则复数z所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若实数x,y满足不等式组$\left\{\begin{array}{l}{y-x≥0}\\{x+y-7≤0}\\{x≥0}\end{array}\right.$,则z=2x+y的最大值是(  )
A.$\frac{7}{2}$B.$\frac{21}{2}$C.14D.21

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设f(x)=$\left\{\begin{array}{l}{lo{g}_{4}x-1,x>0}\\{{2}^{x}-x+\frac{1}{3}{a}^{3},x≤0}\end{array}\right.$,若f(f(4))=$\frac{11}{3}$,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若以直角坐标系xOy的O为极点,Ox为极轴,选择相同的长度单位建立极坐标系,得曲线的极坐标方程是ρsin2θ=6cosθ.
(1)将曲线C的极坐标方程ρsin2θ=6cosθ化为直角坐标方程,并指出曲线是什么曲线;
(2)若直线l的参数方程为$\left\{\begin{array}{l}x=\frac{3}{2}+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数),当直线l与曲线C相交于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a>2,b>2,直线$y=-\frac{b}{a}x+b$与曲线(x-1)2+(y-1)2=1只有一个公共点,则ab的取值范围为(  )
A.$(4,6+4\sqrt{2})$B.$(4,6+4\sqrt{2}]$C.$[6+4\sqrt{2},+∞)$D.$(6+4\sqrt{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=cosxsin2x,以下四个结论:
①f(x)既是偶函数,又是周期函数;
②f(x)图象关于直线x=π对称;
③f(x)图象关于$(\frac{π}{2},0)$中心对称;
④f(x)的最大值$\frac{4}{9}\sqrt{3}$.
其中,正确的结论的序号是①②③.

查看答案和解析>>

同步练习册答案