精英家教网 > 高中数学 > 题目详情

已知椭圆C1、开口向上的抛物线C2的焦点均在y轴上,C1的中心和C2的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于下表中:

(Ⅰ)求C1、C2的标准方程;

(Ⅱ)A、B为抛物线C2的上的两点,分别过A、B作抛物线C2的切线,两条切线交于点Q,若点Q恰好在其准线上.

①直线AB是否过定点,若是,求出定点坐标,若不是,说明理由;

②说明点Q与以线段AB为直径的圆的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于下表中:
   C1  C2
 x  2  
2
 4  3
 y  0  
2
2
 4 -2
3
则C1、C2的标准方程分别为
 
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于下表中:
x 3 -2 4
2
y -2
3
0 -4
2
2
(Ⅰ)求C1、C2的标准方程;
(Ⅱ)请问是否存在直线l满足条件:①过C2的焦点F;②与C1交不同两点M、N且满足
OM
ON
?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1,抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上各取两点,将其坐标记录于下表中:
x 3 -2 4
2
y -2
3
0 -4
2
2
(Ⅰ)求C1、C2的标准方程;
(Ⅱ)若过曲线C1的右焦点F2的任意一条直线与曲线C1相交于A、B两点,试证明在x轴上存在一定点P,使得
PA
PB
的值是常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1,抛物线C2的焦点均在y轴上,C1的中心和C2 的顶点均为坐标原点O,从每条曲线上取两个点,将其坐标记录于下表中:
x 0 -1
2
4
y -2
2
1
16
-2 1
(Ⅰ)求分别适合C1,C2的方程的点的坐标;
(Ⅱ)求C1,C2的标准方程.

查看答案和解析>>

同步练习册答案