【题目】已知函数
(1)当时,求函数的单调区间;
(2)若方程在区间(0,+)上有实数解,求实数a的取值范围;
(3)若存在实数,且,使得,求证:.
【答案】(1)函数的单调减区间为和,单调增区间为.(2)(3)见解析
【解析】
试题分析:(1)时,,分段求出导函数,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(2)设,则,所以在区间上有解,等价于在区间上有解,设,对利用导数研究函数的单调性,结合函数图象及零点存在定理,即可得到符合题意的的取值范围即可;(3)先排除的情况,到,利用导数研究函数的单调性,分别求出最大值与最小值,问题转化为解得,所以.
试题解析:(1)当时,
当时,,则,
令,解得或(舍),所以时,,
所以函数在区间上为减函数.
当时,,,
令,解得,当时,,当时,,
所以函数在区间上为减函数,在区间上为增函数,
且.
综上,函数的单调减区间为和,单调增区间为.
(2)设,则,所以,
由题意,在区间上有解,
等价于在区间上有解.
记,
则,
令,因为,所以,故解得,
当时,,当时,,
所以函数在区间上单调递减,在区间上单调递增,
故函数在处取得最小值.
要使方程在区间上有解,当且仅当,
综上,满足题意的实数a的取值范围为.
(3)由题意,,
当时,,此时函数在上单调递增,
由,可得,与条件矛盾,所以.
令,解得,
当时,,当时,,
所以函数在上单调递减,在上单调递增.
若存在,,则介于m,n之间,
不妨设,
因为在上单调递减,在上单调递增,且,
所以当时,,
由,,可得,故,
又在上单调递减,且,所以.
所以,同理.
即解得,
所以.
科目:高中数学 来源: 题型:
【题目】有一款击鼓小游戏规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得50分,没有出现音乐则扣除150分(即获得-150分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.
(Ⅰ)玩一盘游戏,至少出现一次音乐的概率是多少?
(Ⅱ)设每盘游戏获得的分数为,求的分布列;
(Ⅲ)许多玩过这款游戏的人都发现,玩的盘数越多,分数没有增加反而减少了.请运用概率统计的相关知识分析其中的道理.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中正确的是( )
A.若事件与事件是互斥事件,则
B.若事件与事件满足条件:,则事件A与事件是对立事件
C.一个人打靶时连续射击两次,则事件“至少有一次中靶”与事件“至多有一次中靶”是对立事件
D.把红、橙、黄3张纸牌随机分给甲、乙、丙3人,每人分得1张,则事件“甲分得红牌”与事件“乙分得红牌”是互斥事件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据
(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
参考公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项是正数的数列的前n项和为.
(1)若(nN*,n≥2),且.
①求数列的通项公式;
②若对任意恒成立,求实数的取值范围;
(2)数列是公比为q(q>0, q1)的等比数列,且{an}的前n项积为.若存在正整数k,对任意nN*,使得为定值,求首项的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为,若直线l与曲线C相交于A,B两点,求△AOB的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中, 底面, , , , 是棱上一点.
(I)求证: .
(II)若, 分别是, 的中点,求证: 平面.
(III)若二面角的大小为,求线段的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com