精英家教网 > 高中数学 > 题目详情
9.函数y=sin2x的周期是π,函数y=sin(2x-$\frac{π}{6}$)的周期是π.

分析 由条件利用函数y=Asin(ωx+φ)的周期为 $\frac{2π}{ω}$,得出结论.

解答 解:函数y=sin2x的周期是$\frac{2π}{2}$=π; 函数y=sin(2x-$\frac{π}{6}$)的周期是$\frac{2π}{2}$=π,
故答案为:π;π.

点评 本题主要考查函数y=Asin(ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)的周期为 $\frac{2π}{ω}$,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知$(lo{g}_{2}x)^{2}$-3log2x+2≤0,求函数y=4x-1-4•2x+2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.把平面中所有模为1的向量平移到同一起点,则这些向量的终点构成的图形是单位圆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2cos(ωx+$\frac{π}{6}$)(其中ω>0,x∈R)的最小正周期为10π.
(1)求ω的值;
(2)设α,β∈[0,$\frac{π}{2}$],f(5α+$\frac{5}{3}$π)=-$\frac{6}{5}$,f(5β-$\frac{5}{6}$π)=$\frac{16}{17}$,求sinα,cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x(x2-a)+$\frac{1}{x}$.
(1)证明:对任意a∈R,都有导函数f′(x)是偶函数;
(2)若g(x)=f(x)-$\frac{1}{x}$-$\frac{1}{9}$lnx,且a<0,讨论函数g(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.时间经过10小时,时钟转过的角的弧度数是(  )
A.$\frac{5}{3}$πB.-$\frac{5}{3}$πC.$\frac{5}{6}$πD.-$\frac{5}{6}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数y=logax的图象过点($\frac{1}{4}$,-2),则底a=(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,C=60°,a+b=16,则△ABC的周长l的最小值是(  )
A.22B.23C.24D.26

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知数列{an}中,a1=1,an=n(an+1-an)(n∈N*),则数列{an}的通项公式为(  )
A.2n-1B.nC.${(\frac{n+1}{n})^{n-1}}$D.n2

查看答案和解析>>

同步练习册答案