精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=$\sqrt{3}$sinxcosx+$\frac{1}{2}$cos2x(x∈R),则f(x)的单调递增区间是(  )
A.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}}$](k∈Z)B.[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}}$](k∈Z)
C.[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}}$](k∈Z)D.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}}$](k∈Z)

分析 利用二倍角的正弦公式,两角和的正弦公式化简解析式,由正弦函数的增区间求出f(x)的单调递增区间.

解答 解:由题意得,f(x)=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x
=$sin(2x+\frac{π}{6})$,
由$-\frac{π}{2}+2kπ≤2x+\frac{π}{6}≤\frac{π}{2}+2kπ(k∈Z)$得,
$-\frac{π}{3}+kπ≤x≤\frac{π}{6}+kπ(k∈Z)$,
∴f(x)的单调递增区间是$[-\frac{π}{3}+kπ,\frac{π}{6}+kπ](k∈Z)$,
故选A.

点评 本题考查二倍角的正弦公式、两角和的正弦公式的应用,以及正弦函数的单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知△ABC中,a=3,b=4,c=5,则$\frac{a+b+c}{sinA+sinB+sinC}$=(  )
A.5B.7C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知△ABC是边长为1的等边三角形,点D,E分别是边AB,BC的中点,连接DE并延长到点F,使得DE=4EF,则$\overrightarrow{AF}•\overrightarrow{BC}$的值为(  )
A.$\frac{1}{16}$B.$\frac{1}{8}$C.$\frac{1}{4}$D.$\frac{1}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N+
(1)求an
(2)求数列{Sn}的通项公式,并求出n为何值时,Sn取得最小值?并说明理由.(参考数据:lg 2≈0.3,lg 3≈0.48).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,AB是⊙O的直径,AD,DE是⊙O的切线.AD,BE的延长线交于点C.
(1)求证:A、O、E、D四点共圆;
(2)若OA=$\sqrt{3}$CE,∠B=30°,求CD长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知集合A=(-1,2],集合B={x|x2-2ax+a2-1≤0}.若B∩∁RA=B,则实数a的取值范围(-∞,-2]∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.一服装厂生产某种风衣,月产量x(件)与售价P(元/件)之间的关系为P=160-2x,生产x件的成本总数R=500+30x(元),假设生产的风衣当月全部售出,试问该厂的月产量为多少时,每月获得的利润不少于1300元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点F1(-1,0),F2(1,0),动点M到点F2的距离是2$\sqrt{2}$,线段MF1的中垂线交线段MF2于点P
(1)当点M变化时,求动点P的轨迹G的方程;
(2)直线l与曲线G相切于点N,过F2作NF2的垂线与直线l相交于点Q,求证:点Q落在一条定直线m上,并求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.化简:logab•logbc•logca.

查看答案和解析>>

同步练习册答案