【题目】已知函数f(x)是定义域为R的偶函数,当x≥0时,f(x)= .
(1)求x<0时,f(x)的解析式;
(2)画出函数f(x)在R上的图象;
(3)结合图象写出f(x)的值域.
【答案】
(1)解:当x<0时,﹣x>0,
因为f(x)是定义域为R的偶函数,
所以f(x)=f(﹣x)= = .
即当x<0时,f(x)=
(2)解:由(1)知f(x)= ,
(3)解:由函数的图象可知,f(x)的值域为[0,1)
【解析】(1)根据偶函数的定义求得函数另一部分的解析式;(2)根据函数对于法则进行描点作图;(3)数形结合得到函数的值域.
【考点精析】本题主要考查了函数的图象和函数的值域的相关知识点,需要掌握函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值;求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1.
(1)求f(9),f(27)的值;
(2)解不等式f(x)+f(x﹣8)<2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ,f′(x)为函数f(x)的导函数.
(1)若F(x)=f(x)+b,函数F(x)在x=1处的切线方程为2x+y﹣1=0,求a,b的值;
(2)若f′(x)≤﹣x+ax恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn , 已知a1=1,Sn+1=4an+2(n∈N*).
(1)设bn=an+1﹣2an , 证明数列{bn}是等比数列(要指出首项、公比);
(2)若cn=nbn , 求数列{cn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)在R上是增函数,则下列说法正确的是( )
A.y=﹣f(x)在R上是减函数
B.y= 在R上是减函数
C.y=[f(x)]2在R上是增函数
D.y=af(x)(a为实数)在R上是增函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】判断下列各组函数是否为相等函数:
⑴f(x)=f(x)= ,g(x)=x﹣5;
⑵f(x)=2x+1(x∈Z),g(x)=2x+1(x∈R);
⑶f(x)=|x+1|,g(x)= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一批数量很大的产品,其次品率是10%.
(1)连续抽取两件产品,求两件产品均为正品的概率;
(2)对这批产品进行抽查,每次抽出一件,如果抽出次品,则抽查终止,否则继续抽查,直到抽出次品,但抽查次数最多不超过4次,求抽查次数ξ的分布列及期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)= + 的定义域为( )
A.[﹣1,2)∪(2,+∞)
B.[﹣1,+∞)
C.(﹣∞,2)∪(2,+∞)
D.(﹣1,2)∪(2,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com