精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中a为常数,e是自然对数的底数,曲线在其与y轴的交点处的切线记作,曲线在其与x轴的交点处的切线记作,且.

1)求之间的距离;

2)若存在x使不等式成立,求实数m的取值范围.

【答案】(1);(2)

【解析】

(1)由导数的几何意义求出,因为,所以切线斜率相等求出,求得两直线的方程,代入两平行直线间的距离公式即可得解;(2)不等式化简为

,令,利用导数求出的最大值,根据不等式有解即可求出m的取值范围.

1)函数的图像与y轴的交点为,函数的图像与x轴的交点为

,∴,得,又∵,∴.

,∴切线过点,斜率为

切线过点,斜率为

∴两平行切线间的距离.

2)由,得,故时有解,令,则只需

时,

时,可求得

,当且仅当时取等号,而

,故,即

∴函数在区间上单调递减,故,即

∴实数m的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]

(1)根据频率分布直方图计算图中各小长方形的宽度;

(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);

(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:

广告投入 (单位:万元)

1

2

3

4

5

销售收益 (单位:万元)

2

3

2

7

由表中的数据显示, 之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的极小值为

1)求实数k的值;

2)令,当时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了节能减排,发展低碳经济,我国政府从2001年起就通过相关政策推动新能源汽车产业发展.下面的图表反映了该产业发展的相关信息:

中国新能源汽车产销情况一览表

新能源汽车生产情况

新能源汽车销售情况

产品(万辆)

比上年同期
增长(%)

销量(万辆)

比上年同期
增长(%)

2018年3月

6.8

105

6.8

117.4

4月

8.1

117.7

8.2

138.4

5月

9.6

85.6

10.2

125.6

6月

8.6

31.7

8.4

42.9

7月

9

53.6

8.4

47.7

8月

9.9

39

10.1

49.5

9月

12.7

64.4

12.1

54.8

10月

14.6

58.1

13.8

51

11月

17.3

36.9

16.9

37.6

1-12月

127

59.9

125.6

61.7

2019年1月

9.1

113

9.6

138

2月

5.9

50.9

5.3

53.6

根据上述图表信息,下列结论错误的是(

A.20173月份我国新能源汽车的产量不超过万辆

B.2017年我国新能源汽车总销量超过万辆

C.20188月份我国新能源汽车的销量高于产量

D.20191月份我国插电式混合动力汽车的销量低于万辆

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线:四点都在抛物线.

1)若线段的斜率为,求线段中点的纵坐标;

2)记,若直线均过定点,且分别为的中点,证明:三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过点,倾斜角为,在以坐标原点为极点,轴的非负半轴为极轴的极坐标系中,曲线的方程为.

1)写出直线的参数方程和曲线的直角坐标方程;

2)若直线与曲线相交于两点,设点,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高铁和航空的飞速发展不仅方便了人们的出行,更带动了我国经济的巨大发展.据统 ,2018年这一年内从 市到市乘坐高铁或飞机出行的成年人约为万人次.为了 解乘客出行的满意度,现从中随机抽取人次作为样本,得到下表(单位:人次):

满意度

老年人

中年人

青年人

乘坐高铁

乘坐飞机

乘坐高铁

乘坐飞机

乘坐高铁

乘坐飞机

10(满意)

12

1

20

2

20

1

5(一般)

2

3

6

2

4

9

0(不满意)

1

0

6

3

4

4

span>1)在样本中任取,求这个出行人恰好不是青年人的概率;

2)在2018年从市到市乘坐高铁的所有成年人中,随机选取人次,记其中老年人出行的人次为.以频率作为概率,的分布列和数学期望;

3)如果甲将要从市出发到,那么根据表格中的数据,你建议甲是乘坐高铁还是飞机? 并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地要建造一个边长为2(单位:)的正方形市民休闲公园,将其中的区域开挖成一个池塘,如图建立平面直角坐标系后,点的坐标为,曲线是函数图像的一部分,过边上一点在区域内作一次函数)的图像,与线段交于点(点不与点重合),且线段与曲线有且只有一个公共点,四边形为绿化风景区.

1)求证:

2)设点的横坐标为

①用表示两点的坐标;

②将四边形的面积表示成关于的函数,并求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程是ρ6sinθ,建立以极点为坐标原点,极轴为x轴正半轴的平面直角坐标系.直线l的参数方程是(t为参数)

(1)求曲线C的直角坐标方程;

(2)若直线l与曲线C相交于AB两点,且|AB|=,求直线的斜率k

查看答案和解析>>

同步练习册答案