【题目】已知函数.
(1)求在点处的切线方程;
(2)求证:在上仅有个零点.
【答案】(1);(2)证明见解析.
【解析】
(1)求出和,然后利用点斜式写出所求切线的方程;
(2)利用当时,来说明函数在上没有零点,并利用函数的单调性和零点存在定理证明出函数在区间上有且只有一个零点,并结合,可证明出函数在区间上有两个零点.
(1),则,,.
因此,函数在点处的切线方程为,即;
(2)当时,,此时,,所以,函数在区间上没有零点;
又,下面只需证明函数在区间上有且只有一个零点.
,构造函数,则,
当时,,
所以,函数在区间上单调递增,
,,由零点存在定理知,存在,使得,且当时,,当时,.
所以,函数在处取得极小值,则,
又,所以,由零点存在定理可知,函数在区间上有且只有一个零点.
综上所述,函数在区间上有且仅有两个零点.
科目:高中数学 来源: 题型:
【题目】我们在求高次方程或超越方程的近似解时常用二分法求解,在实际生活中还有三分法.比如借助天平鉴别假币.有三枚形状大小完全相同的硬币,其中有一假币(质量较轻),把两枚硬币放在天平的两端,若天平平衡,则剩余一枚为假币,若天平不平衡,较轻的一端放的硬币为假币.现有 27 枚这样的硬币,其中有一枚是假币(质量较轻),如果只有一台天平,则一定能找到这枚假币所需要使用天平的最少次数为( )
A.2B.3C.4D.5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C的圆心C在直线上,且与x轴正半轴相切,点C与坐标原点O的距离为.
(1)求圆C的标准方程;
(2)直线l过点 且与圆C相交于A,B两点,求弦长的最小值及此时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设某工厂生产的一种产品的一项质量指标值服从正态分布,若一件产品的质量指标值介于90到120之间时,称该产品为优质品.
(1)计算该工厂生产的这种产品的优质品率.
(2)某用户从该工厂购买了100件这种产品,记表示这100件产品中优质品的件数,求随机变量的数学期望.
(3)必须从这工厂中购买多少件产品,才能使其中至少有1件产品是优质品的概率大于0.9?
①参考数据:若随机变量),则,,.
②计算时,所有的小数都精确到小数点后4位,例如:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年6月13日,三届奥运亚军,羽坛传奇,马来西亚名将李宗伟宣布退役,当天有大量网友关注此事件,某网上论坛从关注此事件跟帖中,随机抽取了100名网友进行调查统计,先分别统计他们在跟帖中的留言条数,再把网友人数按留言条数分成6组;,得到如下图所小的频率分布直方图;并将其中留言不低于40条的规定为“强烈关注”,否则为“一般关注”,对这100名网友进一步统计,得到部分数据如下的列联表.
(1)在答题卡上补全2×2列联表中数据,并判断能否有95%的把握认为网友对此事件是否为“强烈关注”与性别有关?
(2)该论坛欲在上述“强烈关注”的网友中按性别进行分层抽样,共抽取5人,并在此5人中随机抽取两名接受访谈,记女性访谈者的人数为占,求5的分布列与数学期望.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
参考公式与数据:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一个正和一个平行四边形ABDE在同一个平面内,其中,,AB,DE的中点分别为F,G.现沿直线AB将翻折成,使二面角为,设CE中点为H.
(1)(i)求证:平面平面AGH;
(ii)求异面直线AB与CE所成角的正切值;
(2)求二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com