精英家教网 > 高中数学 > 题目详情

【题目】正方形的边长为2分别为的中点,以为折痕把折起,使点到达点的位置,平面平面.

1)证明:平面

2)求二面角的余弦值.

【答案】(1)证明见解析(2)

【解析】

1)利用正方形的性质可得垂直于面,得到,所以再由已知条件即可证明.

2)作,垂足为,由(1)得,平面,以为坐标原点,的方向为轴正方向,建立如图所示的空间直角坐标系,利用空间向量法求出二面角的余弦值.

解:(1)由已知可得,平面平面平面

平面平面,所以平面

,又,所以,又

,所以平面.

2)作,垂足为,由(1)得,平面.

为坐标原点,的方向为轴正方向,建立如图所示的空间直角坐标系.

由(1)可得,.,所以..

可得.

由(1)知:为平面的法向量,.

设平面的法向量为,则:,即

所以,令,则.

.

所以二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于旋转体的体积,有如下的古尔丁(guldin)定理:平面上一区域D绕区域外一直线(区域D的每个点在直线的同侧,含直线上)旋转一周所得的旋转体的体积,等于D的面积与D的几何中心(也称为重心)所经过的路程的乘积.利用这一定理,可求得半圆盘,绕直线x旋转一周所形成的空间图形的体积为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机器生产商,对一次性购买两台机器的客户推出两种超过质保期后两年内的延保维修方案:

方案一:交纳延保金元,在延保的两年内可免费维修次,超过次每次收取维修费元;

方案二:交纳延保金元,在延保的两年内可免费维修次,超过次每次收取维修费元.

某工厂准备一次性购买两台这种机器,现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了台这种机器超过质保期后延保两年内维修的次数,统计得下表:

维修次数

0

1

2

3

机器台数

20

10

40

30

以上台机器维修次数的频率代替一台机器维修次数发生的概率,记表示这两台机器超过质保期后延保两年内共需维修的次数.

的分布列;

以所需延保金与维修费用之和的期望值为决策依据,该工厂选择哪种延保方案更合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中,边,令,过边上一点(异于端点)引边的垂线,垂足为,再由引边的垂线,垂足为,又由引边的垂线,垂足为,同样的操作连续进行,得到点列,设);

1)求

2)结论是否正确?请说明理由;

3)若对于任意,不等式恒成立,求的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是函数)在区间上的图象,为了得到这个函数的图象,只需将)的图象上的所有的点(  )

A. 向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变

B. 向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变

C. 向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变

D. 向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201810月考考试中,成都外国语学校共有250名高三文科学生参加考试,数学成绩的频率分布直方图如图:

1)如果成绩大于130的为特别优秀,这250名学生中本次考试数学成绩特别优秀的大约多少人?

2)如果这次考试语文特别优秀的有5人,语文和数学两科都特别优秀的共有2人,从(1)中的数学成绩特别优秀的人中随机抽取2人,求选出的2人中恰有1名两科都特别优秀的概率.

3)根据(1),(2)的数据,是否有99%以上的把握认为语文特别优秀的同学,数学也特别优秀?

P

0.50

0.40

0.010

0.005

0.001

k0

0.455

0.708

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某部门经统计,客户对不同款型理财产品的最满意程度百分比和对应的理财总销售量(万元)如下表(最满意度百分比超高时总销售量最高):

产品款型

A

B

C

D

E

F

G

H

I

J

最满意度%

20

34

25

19

26

20

19

24

19

13

总销量(万元)

80

89

89

78

75

71

65

62

60

52

表示理财产品最满意度的百分比,为该理财产品的总销售量(万元).这些数据的散点图如图所示.

(1)在款型理财产品的顾客满意度调查资料中任取份;只有一份最满意的,求含有最满意客户资料事件的概率.

(2)我们约定:相关系数的绝对值在以下是无线性相关,在以上(含)至是一般线性相关,在以上(含)是较强线性相关,若没有达到较强线性相关则采取“末位”剔除制度(即总销售量最少的那一款产品退出理财销售);试求在剔除“末位”款型后的线性回归方程(系数精确到).

数据参考计算值:

项目

21.9

72.1

288.9

37.16

452.1

17.00

附:回归直线方程的斜率和截距的最小二乘法估计分别为:

线性相关系数 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,点在椭圆上,且的最小值是为坐标原点).

1)求椭圆的标准方程.

2)已知动直线与圆相切,且与椭圆交于两点.是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中,为边的中点.沿直线翻折成(点不落在底面).为线段的中点,则在翻转过程中,以下命题正确的是(

A.四棱锥体积最大值为

B.线段长度是定值;

C.平面一定成立;

D.存在某个位置,使

查看答案和解析>>

同步练习册答案