精英家教网 > 高中数学 > 题目详情
(本小题满分13分)
已知是定义在上的奇函数,当
(1)求的解析式;
(2)是否存在实数,使得当的最小值是4?如果存在,求出的值;如果不存在,请说明理由.
解:(1)设
是奇函数, …(3分) 又 …(4分)
故函数的解析式为: …(5分)
(2)假设存在实数,使得当
有最小值是  …(6分)
①当时,
由于故函数上的增函数。
解得(舍去)…(9分)
②当





+



解得…(12分)u
综上所知,存在实数,使得当最小值4。…(13分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

函数的定义域为,对任意
的解集为
A.(-1,1)B.(-1,+C.(-,-1)D.(-)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数定义域为),设
(1)试确定的取值范围,使得函数上为单调函数;
(2)求证:
(3)求证:对于任意的,总存在,满足,并确定这样的的个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设函数的单调减区间是(1,2)
⑴求的解析式;
⑵若对任意的,关于的不等式
时有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理数)(14分) 已知函数
(Ⅰ)设函数F(x)=18f(x)- [h(x)],求F(x)的单调区间与极值;
(Ⅱ)设,解关于x的方程
(Ⅲ)设,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)
已知函数.
(1)求函数在点处的切线方程;
(2)若在区间上恒成立,求的取值范围;
(3)当时,求证:在区间上,满足恒成立的函数有无穷多个.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(本小题满分12分)
(Ⅰ)设函数,证明:当时,
(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽到的20个号码互不相同的概率为,证明:
(Ⅰ)设函数,证明:当时,
(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽到的20个号码互不相同的概率为,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知都是定义在上的函数,,若,且)及,则的值为            

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,若,则(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案