精英家教网 > 高中数学 > 题目详情
过圆锥曲线焦点的直线与此圆锥曲线交于P1、P2两点,以P1P2为直径的圆与此焦点对应的准线相切,则此圆锥曲线是(   )
A.椭圆B.双曲线C.抛物线D.不确定
C
如图所示,设过抛物线y2=2px(p>0)焦点F的弦为AB,弦中点为M,A、B、M在准线x=-上的垂足为A′、B′、M′,则MM′为梯形AA′B′B的中位线.

所以有|MM′|=(|AA′|+|BB′|).
由抛物线定义|AA′|+|BB′|=|AF|+|BF|=|AB|,
∴|MM′|=|AB|.
∴以过焦点F的直线与抛物线的交点所成线段AB为直径的圆与准线相切.
故选C.
同理可得当相离时,是双曲线;当相交时,是椭圆.以上可作为结论记住,提高解题速度.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(1) 已知动点到点与到直线的距离相等,求点的轨迹的方程;
(2) 若正方形的三个顶点()在(1)中的曲线上,设的斜率为,求关于的函数解析式
(3) 求(2)中正方形面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

-1的直线与抛物线交于两点A,B,如果(O为原点)求P的值及抛物线的焦点坐标。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

经过抛物线y2=2px(p>0)的焦点作一直线l交抛物线于A(x1,y1)、B(x2,y2),则的值为________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知AB为抛物线y2=2px(p>0)的焦点弦,若|AB|=m,则AB中点的横坐标为_____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点F(0,3),且和直线y+3=0相切的动圆圆心的轨迹方程为(    )
A.y2="12x"B.y2="-12x"C.x2="12y"D.x2=-12y

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

给定直线l:y=2x-16,抛物线C:y2=ax(a>0).
(1)当抛物线C的焦点在直线l上时,确定抛物线C的方程;
(2)若△ABC的三个顶点都在(1)所确定的抛物线C上,且点A的纵坐标ya=8,△ABC的重心恰在抛物线C的焦点上,求直线BC的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y=ax2(a>0)与直线y=kx+b(k≠0)有两个公共点,其横坐标分别是x1、x2.而直线y=kx+b与x轴交点的横坐标是x3,则x1、x2、x3之间的关系是(    )
A.x3=x1+x2
B.x3=
C.x1x3=x1x2+x2x3
D.x1x2=x1x3+x2x3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题





A.6B.8C.10D.12

查看答案和解析>>

同步练习册答案