【题目】已知三条直线l1:2x-y+a=0(a>0),直线l2:4x-2y-1=0和直线l3:x+y-1=0,且l1和l2的距离是.
(1)求a的值.
(2)能否找到一点P,使得P点同时满足下列三个条件:①P是第一象限的点;②P点到l1的距离是P点到l2的距离的;③P点到l1的距离与P点到l3的距离之比是?若能,求出P点坐标;若不能,请说明理由.
【答案】(1)a=3;(2)P().
【解析】
(1) 根据两条直线是平行关系,利用两条平行线的距离公式即可求得a的值。
(2) 根据点到直线的距离公式,讨论当P点满足②与③两种条件下求得参数的取值,并注意最后结果的取舍。
(1)l2的方程即为,
∴l1和l2的距离d=,∴.∵a>0,∴a=3.
(2)设点P(x0,y0),若P点满足条件②,则P点在与l1和l2平行的直线
l′:2x-y+c=0上,且,即c=或c=.
∴2x0-y0+或2x0-y0+.
若点P满足条件③,由点到直线的距离公式,
∴x0-2y0+4=0或3x0+2=0.
由P在第一象限,∴3x0+2=0不合题意.
联立方程2x0-y0+和x0-2y0+4=0,解得x0=-3,y0=,应舍去.
由2x0-y0+与x0-2y0+4=0联立,解得x0=,y0=.
所以P()即为同时满足三个条件的点.
科目:高中数学 来源: 题型:
【题目】中国古代名词“刍童”原来是草堆的意思,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上袤,下袤从之,亦倍下袤,上袤从之,各以其广乘之,并,以高乘之,皆六而一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘,将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一.已知一个“刍童”的下底面是周长为18的矩形,上底面矩形的长为3,宽为2,“刍童”的高为3,则该“刍童”的体积的最大值为
A. B. C. 39 D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的右焦点为F,过椭圆C中心的弦PQ长为2,且∠PFQ=90°,△PQF的面积为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设A1、A2分别为椭圆C的左、右顶点,S为直线 上一动点,直线A1S交椭圆C于点M,直线A2S交椭圆于点N,设S1、S2分别为△A1SA2、△MSN的面积,求 的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的三边所在直线的方程分别是lAB:4x-3y+10=0,lBC:y=2,lCA:3x-4y=5.
(1)求∠BAC的平分线所在直线的方程;
(2)求AB边上的高所在直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某射手平时射击成绩统计如表:
环数 | 7环以下 | 7 | 8 | 9 | 10 |
概率 | a | b |
已知他射中7环及7环以下的概率为.
求a和b的值;
求命中10环或9环的概率;
求命中环数不足9环的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某旅游爱好者计划从3个亚洲国家和3个欧洲国家中选择2个国家去旅游.
(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;
(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括但不包括的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一袋中装有10个大小相同的黑球和白球.已知从袋中任意摸出2个球,至少得到1个白球的概率是.
(1)求白球的个数;
(2)从袋中任意摸出3个球,记得到白球的个数为,求随机变量的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产甲、乙两种产品.已知生产一吨甲产品、一吨乙产品所需要的煤、电以及产值如表所示;又知道国家每天分配给该厂的煤和电力有限制,每天供煤至多56吨,供电至多45千瓦.问该厂如何安排生产,才能使该厂日产值最大?最大的产值是多少?
用煤(吨) | 用电(千瓦) | 产值(万元) | |
生产一吨 甲种产品 | 7 | 2 | 8 |
生产一吨 乙种产品 | 3 | 5 | 11 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com