精英家教网 > 高中数学 > 题目详情

设椭圆数学公式的离心率数学公式,右焦点到直线数学公式的距离数学公式,O为坐标原点.
(I)求椭圆C的方程;
(II)过点O作两条互相垂直的射线,与椭圆C分别交于A,B两点,证明点O到直线AB的距离为定值,并求弦AB长度的最小值.

解:(I)由,∴
由右焦点到直线的距离为
得:
解得
所以椭圆C的方程为
(II)设A(x1,y1),B(x2,y2),
直线AB的方程为y=kx+m,
与椭圆联立消去y得3x2+4(k2x2+2kmx+m2)-12=0,
∵OA⊥OB,∴x1x2+y1y2=0,
∴x1x2+(kx1+m)(kx2+m)=0.
即(k2+1)x1x2+km(x1+x2)+m2=0,∴
整理得7m2=12(k2+1)
所以O到直线AB的距离.为定值
∵OA⊥OB,∴OA2+OB2=AB2≥2OA•OB,
当且仅当OA=OB时取“=”号.


即弦AB的长度的最小值是
分析:(I)利用离心率求得a和c的关系式,同时利用点到直线的距离求得a,b和c的关系最后联立才求得a和b,则椭圆的方程可得.
(II)设出A,B和直线AB的方程与椭圆方程联立消去y,利用韦达定理表示出x1+x2和x1x2,利用OA⊥OB推断出x1x2+y1y2=0,
求得m和k的关系式,进而利用点到直线的距离求得O到直线AB的距离为定值,进而利用基本不等式求得OA=OB时AB长度最小,最后根据求得AB的坐标值.
点评:本题主要考查了直线与圆锥曲线的综合问题.考查了学生综合分析问题的能力和基本的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源:广东省揭阳市2007年高中毕业班第一次高考模拟考试题(文科) 题型:044

如图,在直角坐标系xOy中,已知椭圆的离心率e=

左右两个焦分别为F1、F2.过右焦点F2且与x轴垂直的直线与椭圆C相交M、N两点,且|MN|=2.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设椭圆C的一个顶点为B(0,-b),是否存在直线l:y=x+m,使点B关于直线l的对称点落在椭圆C上,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:广东省揭阳市2007年高中毕业班第一次高考模拟考试题(理科) 题型:044

如图,在直角坐标系xOy中,已知椭圆的离心率e=,左右两个焦分别为F1、F2.过右焦点F2且与x轴垂直的直线与椭圆C相交M、N两点,且|MN|=1.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足,()试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角坐标系中,已知椭圆的离心率e=,左右两个焦分别为.过右焦点且与轴垂直的

直线与椭圆相交M、N两点,且|MN|=1.

(Ⅰ) 求椭圆的方程;

(Ⅱ) 设椭圆的左顶点为A,下顶点为B,动点P满足

)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角坐标系中,已知椭圆的离心率e=,左右两个焦分别为.过右焦点且与轴垂直的

直线与椭圆相交M、N两点,且|MN|=1.

(Ⅰ) 求椭圆的方程;

(Ⅱ) 设椭圆的左顶点为A,下顶点为B,动点P满足

)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆上.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年宁夏石嘴山市平罗中学高二(上)期中数学试卷(解析版) 题型:解答题

在直角坐标系xOy中,已知椭圆的离心率e=,左右两个焦分别为F1,F2.过右焦点F2且与x轴垂直的直线与椭圆C相交M、N两点,且|MN|=2.
(1)求椭圆C的方程;
(2)设椭圆C的一个顶点为B(0,-b),是否存在直线l:y=x+m,使点B关于直线l 的对称点落在椭圆C上,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案