精英家教网 > 高中数学 > 题目详情
11.设函数y=f1(x)是定义域为R的增函数,y=f2(x)是定义域为R的减函数,则(  )
A.函数y=f1(x)+f2(x)是定义城为R的增函数
B.函数y=f1(x)+f2(x)是定义城为R的减函数
C.函数y=f1(x)-f2(x)是定义城为R的增函数
D.函数y=f1(x)-f2(x)是定义城为R的减函数

分析 根据函数单调性的性质进行判断即可.

解答 解:A.y=f1(x)=x是定义域为R的增函数,y=f2(x)=-x是定义域为R的减函数,
则y=f1(x)+f2(x)=x-x=0,在定义城上不是增函数,故A错误,
B.y=f1(x)=2x是定义域为R的增函数,y=f2(x)=-x是定义域为R的减函数,
则y=f1(x)+f2(x)=2x-x=x,在定义城上是增函数,故B错误,
C.正确
D.y=f1(x)=x是定义域为R的增函数,y=f2(x)=-x是定义域为R的减函数,
则y=f1(x)-f2(x)=x-(-x)=2x,在定义城上是增函数,故D错误,
故选:C.

点评 本题主要考查函数单调性的判断,根据函数单调性的运算性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图所示,AC为球O的直径,BC是截面圆O1的直径,点D在圆O1上,根据球的截面性质:球心和截面圆心的连线垂直于截面,求证:
(1)AB⊥平面BCD;
(2)平面ADC⊥平面ABD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,一次函数y=-$\frac{3}{4}$x+6的图象分别与x轴、y轴交于点A,B,点P从点B出发,沿BA以每秒1个单位长度的速度向点A,当点P到达点A时停止运动,设点P的运动时间为t秒.
(1)点P在运动的过程中,若某一时刻,△OPA的面积为12,求此时P点的坐标;
(2)在(1)的基础上,设点Q为y轴上一动点,当PQ+BQ的值最小时,求Q点坐标;
(3)在整个运动过程中,当t为何值时,△AOP为等腰三角形?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.当x$≥\frac{5}{2}$时,不等式$\frac{{x}^{2}-4x+5}{2x-4}$≥a恒成立,则实数a的取值范围是(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某商店每周购进一批商品,进价为6元/件,若零售价定为10元/件,则可售出120件;当售价降低0.5元/件时,销量增加20件.问售价p定为多少和每周进货多少时利润最大,其值为何?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知U为全集,集A、B为非空集合,则下面说法正确的有(2)(4)(填序号).
(1)若A∪(∁UB)=U,则A=B;
(2)若A⊆B,则A∩(∁UB)=∅:
(3)若A∪B=B,则(∁UA)⊆(∁UB);
(4)若A?B,则A∩B=A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.判断函数的奇偶性:
(1)f(x)=log3$\frac{x-2}{x+2}$
(2)f(x)=x($\frac{1}{{3}^{x}-1}$+$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=cosx,x∈[$\frac{π}{3},\frac{12π}{11}$]的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设f(x)=$\left\{\begin{array}{l}{\frac{34}{10-x}-1(0≤x≤2)}\\{10-{2}^{x}(2<x≤8)}\end{array}\right.$,若f(x)≥2,则x的取值范围为[0,3].

查看答案和解析>>

同步练习册答案