精英家教网 > 高中数学 > 题目详情
9.下列四个命题:
①样本相关系数r越大,线性相关关系越强;
②回归直线就是散点图中经过样本数据点最多的那条直线;
③设m,n是不同的直线,α,β是不同的平面,若α∩β=m,n∥m,且n?α,n?β,则n∥α且n∥β;
④若直线m不垂直于平面α,则直线m不可能垂直于平面α内的无数条直线.
其中正确命题的序号为(  )
A.、①②③B.①③C.①②④D.

分析 ①利用相关系数的定义可直接判断;
②结合线性回归方程的求法可知;
③利用线面平行的定义可判断;
④当平面α内的无数条直线平行时复合题意.

解答 解:①两个变量之间的相关系数,r的绝对值越接近于1,表面两个变量的线性相关性越强,r的绝对值越接近于0,表示两个变量之间几乎不存在线性相关,故错误;
②线性回归方法就是由样本点去寻找一条贴近这些样本点的直线的数学方法,找拟合效果最好的直线,不一定经过样本数据点最多的那条直线,故不正确;
③由线面平行的定义可知,正确;
④若直线m不垂直于平面α,则直线m有可能垂直于平面α内的无数条直线,只需这些直线不相交即可,故错误.
故答案为D.

点评 考查了相关系数,回归方程的概念,平面平行,线面垂直的判断.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知定义在实数集R上的偶函数f(x)满足f(x+2)=f(x-2),且当x∈[0,2]时,f(x)=x2,则f(2015)=(  )
A.-1B.1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=2+lnx在x=1处的导数为(  )
A.2B.$\frac{5}{2}$C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.给出下列四个语句:①两条异面直线有公共点;②你是武威二中的学生吗?③x∈{1,2,3,4};④方向相反的两个向量是共线向量.其中是命题的语句共有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出下列四个命题,其中正确的命题有(  )个.
(1)函数y=sin2x+cos2x在x∈[0,$\frac{π}{2}$]上的单调递增区间是[0,$\frac{π}{8}$];
(2)a1,a2,b1,b2均为非零实数,集合A={x|a1x+b1>0},B={x|a2x+b2>0},则“$\frac{{a}_{1}}{{a}_{2}}$=$\frac{{b}_{1}}{{b}_{2}}$”是“A=B”的必要不充分条件
(3)若p∨q为真命题,则p∧q也为真命题
(4)命题?x∈R,x2+x+1<0的否定?x∈R,x2+x+1<0.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知点M(x1,y1)是椭圆C:$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{2}$=1上的动点,点N(x2,y2)是直线l:x+2y-7=0上的动点,则|x1-x2|+|y1-y2|的最小值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,若a、b、c成等差数列,sinB=$\frac{4}{5}$,且△ABC的面积为$\frac{3}{2}$,则b=2.(用数值作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)存在反函数f-1(x),若函数y=f(x+1)过点(3,3),则函数f-1(x)恒过点(  )
A.(4,3)B.(3,4)C.(3,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.二次函数y=x2-2x-1的对称轴是x=1.

查看答案和解析>>

同步练习册答案