精英家教网 > 高中数学 > 题目详情
已知在△ABC中,a+b=10.c=4,∠C=60°则S△ABC=
 
考点:正弦定理,余弦定理
专题:解三角形
分析:由余弦定理可得:c2=a2+b2-2abcosC=(a+b)2-2ab-2abcosC,把a+b=10代入可得ab=28.再利用S△ABC=
1
2
absin60°
即可得出.
解答: 解:由余弦定理可得:c2=a2+b2-2abcosC=(a+b)2-2ab-2abcosC,
∴42=102-2ab-2abcos60°,化为ab=28.
∴S△ABC=
1
2
absin60°
=
1
2
×28×
3
2
=7
3

故答案为:7
3
点评:本题考查了余弦定理及其三角形的面积计算公式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C的方程是x2+y2-4x+F=0,且圆C与直线y=x+1相切,那么F=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|
1
2
≤2x≤2},B={x|x≥a}.
(1)若a=0时.求A∩B,A∪B;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

比较大小sin(cosα)与cos(sinα)(其中0<α<
π
2
).

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题是真命题的是(  )
A、若a>b,则ac2>bc2
B、若a>b,c>d,则ac>bd
C、若
a2
c2
b2
c2
,则a>b
D、若a>b>0,则
na
nb
(n>1,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a满足有且仅有一个正方形,其四个顶点均在曲线y=x3+ax上,求该正方形的边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y满足约束条件
x+y-1≤0
x≥0
y≥-1
,则目标函数Z=x+2y的取值范围是(  )
A、[-2,0]
B、[0,+∞]
C、[0,2]
D、[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x、y满足条件
x-2y-4≤0
2x+y-8≤0
x≥m
,若
y
x
最大值为4,则
y
x
的最小值为(  )
A、-1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的增函数,对任意x、y∈R,记命题P:“若x+y>0,则 f(x)+f(y)>f(-x)+f(-y)”
(Ⅰ)证明:命题P是真命题;
(Ⅱ)写出命题P的逆命题Q,并用反证法证明Q也是真命题.

查看答案和解析>>

同步练习册答案