精英家教网 > 高中数学 > 题目详情
9、已知y=x(x-1)(x+1)的图象如图所示,今考虑f(x)=x(x-1)(x+1)+0.01,则方程f(x)=0①有三个实根;②当x<-1时,恰有一实根(有一实根且仅有一实根);③当-1<x<0时,恰有一实根;④当0<x<1时,恰有一实根;⑤当x>1时,恰有一实根.则正确结论的编号为
①②
分析:计算f(-2)与f(-1)的值,根据根的存在性定理可知在(-2,-1)内有一个实根,结合图象可知方程f(x)=0在(-∞,-1)上,只有一个实根,故②正确,由图知f(x)=0在(-1,0)上没有实数根,所以③不正确,f(x)=0在(0,1)上有两个实根,④不正确,f(x)=0在(1,+∞)上没有实根,⑤不正确.并且由此可知①也正确.
解答:解:∵f(-2)=-2×(-3)×(-1)+0.01=-5.99<0,
f(-1)=0.01>0,即f(-2)•f(-1)<0,
∴在(-2,-1)内有一个实根.
由图中知:方程f(x)=0在(-∞,-1)上,只有一个实根,
所以②正确.
又∵f(0)=0.01>0,由图知f(x)=0在(-1,0)上没有实数根,
所以③不正确
又∵f(0.5)=0.5×(-0.5)×1.5+0.01=-0.365<0,
f(1)=0.01>0,即f(0.5)f(1)<0,
所以f(x)=0.
在(0.5,1)上必有一个实根,且f(0)•f(0.5)<0,
∴f(x)=0在(0,0.5)上也有一个实根.
∴f(x)=0在(0,1)上有两个实根,④不正确.
由f(1)>0且f(x)在(1,+∞)上是增函数,
∴f(x)>0,f(x)=0在(1,+∞)上没有实根.
∴⑤不正确.并且由此可知①也正确.
答案①②
点评:本题主要考查了函数与方程的综合运用,以及三次函数的图象的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知y=x(x-1)(x+1)的图象如图所示.令f(x)=x(x-1)(x+1)+0.01,则下列关于f(x)=0的解叙述正确的是
①⑤
①⑤

①有三个实根;
②x>1时恰有一实根;
③当0<x<1时恰有一实根;
④当-1<x<0时恰有一实根;
⑤当x<-1时恰有一实根(有且仅有一实根).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(2)=1,f′(x)为f(x)的导函数.已知y=f′(x)的图象如图所示,若两个正数a,b满足f(2a+b)>1,则
b-1
a-2
的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)为R奇函数,当x≥0时f(x)=
3x+1
,则当x<0时,则f(x)=
-
3-x+1
-
3-x+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x(x-a)2,g(x)=
a2
x2
,x∈(-∞,0)且a<0.
(Ⅰ)求函数y=f(x)和y=g(x)在(-∞,0)上图象的交点坐标;
(Ⅱ)设函数y=f(x),y=g(x)的图象在同一交点处的两条切线分别为l1,l2,是否存在这样的实数a,使得l1⊥l2?若存在,请求出a的值和相应交点的坐标;若不存在,请说明理由;
(Ⅲ)若对任意x1∈[-1,0),存在x2∈[-1,0),使f(x1)≥g(x2),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|2|x|-2|,x∈R.
①判断函数y=f(x)的奇偶性,并证明你的结论;
②作出函数y=f(x)的图象,并完成下列填空.
已知关于x的方程f(x)=k,则当k∈
{0}∪(1,+∞)
{0}∪(1,+∞)
时,方程有2个根;当k=
1
1
时,方程有3个根;当k
∈(0,1)
∈(0,1)
时,方程有4个根.

查看答案和解析>>

同步练习册答案