精英家教网 > 高中数学 > 题目详情
19.在平行四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,先用$\overrightarrow{a}$,$\overrightarrow{b}$表示向量$\overrightarrow{AC}$和$\overrightarrow{DB}$,并回答:当$\overrightarrow{a}$,$\overrightarrow{b}$分别满足什么条件时,四边形ABCD为矩形、菱形、正方形?

分析 由平行四边形法则及三角形法则可求$\overrightarrow{AC}$和$\overrightarrow{DB}$,由矩形、菱形、正方形的定义可得$\overrightarrow{a}$,$\overrightarrow{b}$需要满足的条件.

解答 解:由平面向量的平行四边形法则得,
$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{AD}$=$\overrightarrow{a}$+$\overrightarrow{b}$,
由减法的三角形法则得,
$\overrightarrow{DB}$=$\overrightarrow{AB}$-$\overrightarrow{AD}$=$\overrightarrow{a}$-$\overrightarrow{b}$,
当$\overrightarrow{a}$•$\overrightarrow{b}$=0时,四边形ABCD为矩形,
当|$\overrightarrow{a}$|=|$\overrightarrow{b}$|时,四边形ABCD为菱形,
当$\overrightarrow{a}$•$\overrightarrow{b}$=0且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|时,四边形ABCD为正方形.

点评 本题考查了向量的线性运算及数量积运算及应用,作图辅助更直观.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图(1),已知A,B,C.P四点共面,PC上AC,AB=BC,D,F分别为AC,PC的中点,DE⊥AP于E.把平面四边形ABCP沿AC折成直二面角,如图(2).
(1)求i正:AP⊥平面BDE;
(2)求证:平面BDF⊥平面BDE;
(3)延长AB至H,使得AB=BH,如图(3).在AP上是否存在点Q,使得平面CHQ∥平面BDE?若存在,指出Q点位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知,命题p:?x∈R,x2+ax+2≥0,命题q:?x∈[-3,-$\frac{1}{2}$],x2-ax+1=0.
(1)若命题p为真命题,求实数a的取值范围;
(2)若命题q为真命题,求实数a的取值范围;
(3)若命题“p∨q”为真命题,且命题“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≤-2}\\{\frac{x}{2}.x>-2}\end{array}\right.$的定义域为R,值域为[-4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,能否在椭圆上找到一点M,使点M到左准线的距离是它到两个焦点距离的比例中项?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,在四边形ABCD中,$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{AD}$,对角线AC与BD交于点O,设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,用$\overrightarrow{a}$和$\overrightarrow{b}$表示$\overrightarrow{AB}$和$\overrightarrow{AD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若?x∈R,函数f(x)=mx2+x-m-a的图象和x轴恒有公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求适合下列条件的椭圆的标准方程:
(1)a=4,b=1,焦点在x轴上;
(2)a=4,c=$\sqrt{15}$,焦点在y轴上;
(3)a+b=10,c=2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x+2)=-f(x),当x∈[4,6]时f(x)=2x-1,求f(x)在[0,2]上的表达式.

查看答案和解析>>

同步练习册答案