【题目】如图所示,平面ABCD⊥平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,AF=AD=a,G是EF的中点.
(1)求证:平面AGC⊥平面BGC;
(2)求GB与平面AGC所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x+2.
(1)求y=f(x)的表达式;
(2)求y=f(x)的图象与两坐标轴所围成封闭图形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果对定义在R上的函数f(x)对任意两个不相等的实数x1 , x2 , 都有(x1﹣x2)[f(x1)﹣f(x2)]>0,则称函数f(x)为“H函数”.给出下列函数①y=﹣x3+x+1;②y=3x﹣2(sinx﹣cosx);③y=ex+1;④ .其中“H函数”的个数为( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.
求证:(1)平面AB1F1∥平面C1BF;
(2)平面AB1F1⊥平面ACC1A1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.
()判断函数, 是否是有界函数,请写出详细判断过程.
()试证明:设, ,若, 在上分别以, 为上界,求证:函数在上以为上界.
()若函数在上是以为上界的有界函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别为CD和PC的中点.
求证:(1) BE∥平面PAD;
(2) 平面BEF⊥平面PCD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= +alnx﹣2,曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+3垂直.
(1)求实数a的值;
(2)记g(x)=f(x)+x﹣b(b∈R),若函数g(x)在区间[e﹣1 , e]上有两个零点,求实数b的取值范围;
(3)若不等式πf(x)>( )1+x﹣lnx在|t|≤2时恒成立,求实数x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)求与点P(3,5)关于直线l:x-3y+2=0对称的点P′的坐标.(2)已知直线l:y=-2x+6和点A(1,-1),过点A作直线l1与直线l相交于B点,且|AB|=5,求直线l1的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com