【题目】已知函数,那么下列结论中错误的是( )
A. 若是的极小值点,则在区间上单调递减
B. ,使
C. 函数的图像可以是中心对称图形
D. 若是的极值点,则
【答案】A
【解析】分析:对于选项A,先求导得,设其对应方程的两根为。根据一元二次不等式的解法可得函数的增区间为,减区间为,由此可得选项A说法错误;由选项A的解题过程可得选项B、D正确;对于选项C,取特殊值,得特殊函数,因为函数为奇函数,所以选项C正确。
详解:对于选项A,,假设方程的两根为。根据一元二次不等式的解法可得:由得或,由得,所以函数的增区间为,减区间为,极小值点为,所以选项A错误;
对于选项B,由选项A的解题过程可知在区间上,一定,使,所以选项B正确。
对于选项C,当时,函数,此函数图像关于原点对称。所以选项C正确;
对于选项D,由选项A的解题过程可知:若是的极值点,则。所以选项D正确。
故选A。
科目:高中数学 来源: 题型:
【题目】若一个人下半身长(肚脐至足底)与全身长的比近似为(,称为黄金分割比),堪称“身材完美”,且比值越接近黄金分割比,身材看起来越好,若某人着装前测得头顶至肚脐长度为72,肚脐至足底长度为103,根据以上数据,作为形象设计师的你,对TA的着装建议是( )
A.身材完美,无需改善B.可以戴一顶合适高度的帽子
C.可以穿一双合适高度的增高鞋D.同时穿戴同样高度的增高鞋与帽子
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设甲、乙、丙三个乒乓球协会分别选派3,1,2名运动员参加某次比赛,甲协会运动员编号分别为,,,乙协会编号为,丙协会编号分别为,,若从这6名运动员中随机抽取2名参加双打比赛.
(1)用所给编号列出所有可能抽取的结果;
(2)求丙协会至少有一名运动员参加双打比赛的概率;
(3)求参加双打比赛的两名运动员来自同一协会的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD的底面ABCD是正方形,PD⊥平面ABCD,E为PB上的点,且2BE=EP.
(1)证明:AC⊥DE;
(2)若PC= BC,求二面角E﹣AC﹣P的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了实现绿色发展,避免浪费能源,某市政府计划对居民用电采用阶梯收费的方法.为此,相关部分在该市随机调查了户居民六月份的用电量(单位:)和家庭收入(单位:万元),以了解这个城市家庭用电量的情况.
用电量数据如下:
.
对应的家庭收入数据如下:
.
(Ⅰ)根据国家发改委的指示精神,该市计划实施阶阶梯电价,使的用户在第一档,电价为元/;的用户在第二档,电价为元/;的用户在第三档,电价为元/,试求出居民用电费用与用电量间的函数关系;
(Ⅱ)以家庭收入为横坐标,电量为纵坐标作出散点图(如图),求关于的回归直线方程(回归直线方程的系数四舍五入保留整数).
(Ⅲ)小明家的月收入元,按上述关系,估计小明家月支出电费多少元?
参考数据:,,,,.
参考公式:一组相关数据,,…,的回归直线方程的斜率和截距的最小二乘法估计分别为,,其中,为样本均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于与有表格中的数据,且与线性相关,由最小二乘法得.
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 60 | 50 | 70 |
(1)求与的线性回归方程;
(2)现有第二个线性模型:,且.若与(1)的线性模型比较,哪一个线性模型拟合效果比较好,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中:
①若,满足,则的最大值为;
②若,则函数的最小值为
③若,满足,则的最小值为
④函数的最小值为
正确的有__________.(把你认为正确的序号全部写上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{xn}是各项均为正数的等比数列,且x1+x2=3,x3﹣x2=2.(12分)
(Ⅰ)求数列{xn}的通项公式;
(Ⅱ)如图,在平面直角坐标系xOy中,依次连接点P1(x1 , 1),P2(x2 , 2)…Pn+1(xn+1 , n+1)得到折线P1 P2…Pn+1 , 求由该折线与直线y=0,x=x1 , x=xn+1所围成的区域的面积Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线,.
(1)直线是否过定点?若过定点,求出该定点坐标,若不过定点,请说明理由;
(2)已知点,若直线上存在点满足条件,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com