精英家教网 > 高中数学 > 题目详情

【题目】已知关于x的不等式ax2+2x+c>0的解集为 ,其中a,c∈R,则关于x的不等式﹣cx2+2x﹣a>0的解集是

【答案】(﹣2,3)
【解析】解:∵关于x的不等式ax2+2x+c>0的解集为(﹣ ),∴﹣ 是一元二次方程ax2+2x+c=0的两实数根,且a<0;

解得a=﹣12,c=2;
∴不等式﹣cx2+2x﹣a>0化为﹣2x2+2x+12>0,
即x2﹣x﹣6<0,
化简得(x+2)(x﹣3)<0,
解得﹣2<x<3,
该不等式的解集为(﹣2,3).
所以答案是:(﹣2,3).
【考点精析】掌握解一元二次不等式是解答本题的根本,需要知道求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知圆 ,点,点),以为圆心, 为半径作圆,交圆于点,且的平分线交线段于点.

(1)当变化时,点始终在某圆锥曲线上运动,求曲线的方程;

(2)已知直线 过点 ,且与曲线交于 两点,记面积为 面积为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥E﹣ABCD中,底面ABCD为矩形,平面ABCD⊥平面ABE,∠AEB=90°,BE=BC,F为CE的中点,求证:

(1)AE∥平面BDF;
(2)平面BDF⊥平面ACE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=

(Ⅰ)求f(x)的单调区间;

(Ⅱ)若a>0,求证:f(x)≥.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求曲线在点处的切线方程;

(Ⅱ)当时,若在区间上的最小值为,求的取值范围;

(Ⅲ)若对任意,有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)(其中A>0, )的图象如图所示,为了得到g(x)=2sin2x的图象,则只需将f(x)的图象(
A.向右平移 个长度单位
B.向右平移 个长度单位
C.向左平移 个长度单位
D.向左平移 个长度单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为 为参数).以坐标原点为极点, 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.

(1)当时,求曲线上的点到直线的距离的最大值;

(2)若曲线上的所有点都在直线的下方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)当时,求曲线在点处的切线方程;

(2)当时,求函数的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的一条对称轴为,且最高点的纵坐标是

(1)求的最小值及此时函数的最小正周期、初相;

(2)在(1)的情况下,设,求函数上的最大值和最小值.

查看答案和解析>>

同步练习册答案