精英家教网 > 高中数学 > 题目详情

【题目】己知一个动点M在圆上移动,它与定点所连线段的中点为P.

1)求点P的轨迹方程.

2)过定点的直线与点P的轨迹交于AB两点,求弦AB的中点C的轨迹.

【答案】1

2

【解析】

(1)由题可知点为被动点,点为主动点,分别设出其坐标,找到主动点与被动点之间的关系,将其代入主动点所满足的方程,化简,即可求得点的轨迹;

(2)设圆心为,联结,由圆的性质知,得,按照求谁设谁原理,设出点C的坐标,然后代进去化简整理即可.

(1)设,根据中点公式得,解得

,得

∴点P的轨迹方程是.

(2)设弦AB的中点C的坐标为,设圆心为,联结

由圆的性质知,得,所以

于是

因此所求点C的轨迹方程是以为圆心,以为半径,且位于圆内一段圆弧.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学2018年的高考考生人数是2015年高考考生人数的倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:

则下列结论正确的是  

A. 与2015年相比,2018年一本达线人数减少

B. 与2015年相比,2018年二本达线人数增加了

C. 2015年与2018年艺体达线人数相同

D. 与2015年相比,2018年不上线的人数有所增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=lnxx+1.

1)求曲线y=fx)在点(1f1))处的切线方程:

2)若非零实数a使得fxaxax2x∈[1,+)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,智能手机的更新换代极其频繁和快速,而青少年对新事物的追求更是强烈,为了调查大学生更换手机的时间,现对某大学中的大学生使用一部手机的年限进行了问卷调查,并从参与调查的大学生中抽取了男生、女生各人进行抽样分析,制成如下的频率分布直方图.

1)根据频率分布直方图,估计男大学生使用手机年限的中位数和女大学生使用手机年限的众数;

2)根据频率分布直方图,求出男大学生和女大学生使用手机年限的平均值,并分析比较男大学生和女大学生哪个群体更换手机的频率更高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,离心率为.过原点的直线与椭圆有两个不同的交点.

1)求椭圆长半轴长;

2)求最大值;

3)若直线分别与轴交于点,求证:的面积与的面积的乘积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】名学生某次数学考试成绩(单位:分)的频率分布直方图如图.

1)求频率分布直方图中的值;

2)估计总体中成绩落在中的学生人数;

3)根据频率分布直方图估计名学生数学考试成绩的众数,中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某共享单车经营企业欲向甲市投放单车,为制定适宜的经营策略,该企业首先在已投放单车的乙市进行单车使用情况调查.调查过程分随机问卷、整理分析及开座谈会三个阶段.在随机问卷阶段,A,B两个调查小组分赴全市不同区域发放问卷并及时收回;在整理分析阶段,两个调查小组从所获取的有效问卷中,针对15至45岁的人群,按比例随机抽取了300份,进行了数据统计,具体情况如下表:

组别

年龄

A组统计结果

B组统计结果

经常使用单车

偶尔使用单车

经常使用单车

偶尔使用单车

27人

13人

40人

20人

23人

17人

35人

25人

20人

20人

35人

25人

(1)先用分层抽样的方法从上述300人中按“年龄是否达到35岁”抽出一个容量为60人的样本,再用分层抽样的方法将“年龄达到35岁”的被抽个体数分配到“经常使用单车”和“偶尔使用单车”中去.求这60人中“年龄达到35岁且偶尔使用单车”的人数;

(2)从统计数据可直观得出“是否经常使用共享单车与年龄(记作岁)有关”的结论.在用独立性检验的方法说明该结论成立时,为使犯错误的概率尽可能小,年龄应取25还是35?请通过比较的观测值的大小加以说明.

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我边防局接到情报,在海礁所在直线的一侧点处有走私团伙在进行交易活动,边防局迅速派出快艇前去搜捕:如图,已知快艇出发位置在的另一侧码头处,公里,公里,

1)是否存在点,使快艇沿航线的路程相等;如存在,则建立适当的直角坐标系,求出点的轨迹方程,且画出轨迹的大致图形;如不存在,请说明理由;

2)问走私船在怎样的区域上时,路线比路线的路程短,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的焦点和上项点分别为,我们称为椭圆特征三角形”.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是相似椭圆,且三角形的相似比即为椭圆的相似比. 若椭圆,直线

已知椭圆与椭圆是相似椭圆,求的值及椭圆与椭圆相似比;

求点到椭圆上点的最大距离;

如图,设直线与椭圆相交于两点,与椭圆交于两点,求证:.

查看答案和解析>>

同步练习册答案