精英家教网 > 高中数学 > 题目详情
13.由曲线x2-y2-2x=0变成曲线x′2-16y′2-4x′=0的伸缩变换为横坐标伸长为原来的2倍,纵坐标缩短为原来的$\frac{1}{2}$倍.

分析 x2-y2-2x=0可化为(x-1)2-y2=1;x′2-16y′2-4x′=0可化为( $\frac{1}{2}$x′-1)2-(2y′)2=1;从而得到.

解答 解:x2-y2-2x=0可化为(x-1)2-y2=1;
x′2-16y′2-4x′=0可化为($\frac{1}{2}$x′-1)2-(2y′)2=1;
x2-y2-2x=0$\stackrel{横坐标伸长为原来的2倍,纵坐标缩短为原来的\frac{1}{2}倍}{→}$x′2-16y′2-4x′=0.
故答案为:横坐标伸长为原来的2倍,纵坐标缩短为原来的2倍.

点评 本题考查了图象的伸缩变换的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.函数f(x)=$\frac{{x}^{2}}{x-1}$的单调递减区间为(  )
A.(0,2)B.(0,1)∪(1,2)C.(0,1)和(1,2)D.(-∞,0)和(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)已知直线l1:(m+1)x+(m2-2m)y+4=0,l2:2x+(m-2)y-1=0,如果直线l1∥l2,求m的值;
(2)已知直线l1:nx+(2-n)y=3,l2:(n-2)x+(2n+4)y=2,如果这两条直线相互垂直,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在满足极坐标和直角坐标互化条件下,极坐标方程ρ2=$\frac{12}{3co{s}^{2}θ+4si{n}^{2}θ}$经过直角坐标系下的伸缩变换$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=\frac{\sqrt{3}}{3}y}\end{array}\right.$后,得到的曲线是(  )
A.直线B.椭圆C.双曲线D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在如图所示的△ABC中,内角A,B,C所对的边的长分别为a,b,c,已知a=c,且满足$cosC+({cosA-\sqrt{3}sinA})cosB=0$,若点O是△ABC外一点,且OA=2OB=4,∠AOB=θ,则四边形OACB面积的最大值为(  )
A.$4+4\sqrt{3}$B.$5+4\sqrt{3}$C.12D.$8+5\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知α,β是平面,m,n是直线,给出下列命题:
①若m⊥α,m?β,则α⊥β;
②若m?α,n?α,m∥β,n∥β,则α∥β;
③若m?α,n?α,m,n是异面直线,那么n与α相交;
④若α∩β=m,n∥m,则n∥α且n∥β
其中正确的命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直三棱柱ABC-A1B1C1中,D,E,F分别为BC,BB1,AA1的中点,求证:平面B1FC∥平面EAD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.一个盒子里装有标号为1,2,3,4,5的5张标签,不放回地抽取2张标签,则2张标签上的数字为相邻整数的概率为$\frac{2}{5}$(用分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=ax-b的图象如图所示,则(  )
A.a>1,b>1B.a>1,0<b<1C.0<a<1,b>1D.0<a<1,0<b<1

查看答案和解析>>

同步练习册答案