精英家教网 > 高中数学 > 题目详情
3.已知△ABC的面积是3,角A,B.C所对边长分别为a,b,c,cosA=$\frac{4}{5}$.
(Ⅰ)求$\overrightarrow{AB}•\overrightarrow{AC}$;
(Ⅱ)若b=2,求a的值.

分析 (Ⅰ)由已知利用同角三角函数基本关系式可求sinA的值,利用三角形面积公式可求bc=10,利用平面向量数量积的运算即可计算得解$\overrightarrow{AB}•\overrightarrow{AC}$的值.
(Ⅱ)由已知可求c,由余弦定理即可解得a的值.

解答 解:(Ⅰ)在△ABC中,由$cosA=\frac{4}{5}$,得$sinA=\frac{3}{5}$.
又$\frac{1}{2}$bcsinA=3,$\frac{1}{2}bcsinA=3$,
∴bc=10.
∴$\overrightarrow{AB}•\overrightarrow{AC}=bccosA=8$.
(Ⅱ)∵b=2,可得:c=5,
∴由余弦定理可得:a2=b2+c2-2bccosA=13,
∴解得:$a=\sqrt{13}$.

点评 本题主要考查了同角三角函数基本关系式,三角形面积公式,平面向量数量积的运算,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.过点P(4,2)作圆x2+y2=2的两条切线,切点分别为A,B,点O为坐标原点,则△AOB的外接圆方程是(  )
A.(x+2)2+(y+1)2=5B.(x+4)2+(y+2)2=20C.(x-2)2+(y-1)2=5D.(x-4)2+(y-2)2=20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.不等式${(\frac{1}{2})^{2{x^2}+x-1}}$>1的解集是(-1,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow a$=(1,1),$\overrightarrow b$=(1,-1),若$\overrightarrow c$=$-\frac{3}{2}\overrightarrow a$+$\frac{1}{2}\overrightarrow b$,则$\overrightarrow c$=(  )
A.(-1,-2)B.(1,2)C.(-1,2)D.(1,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|(x+2)(x-3)<0},B={-1,0,1,2,3},则A∩B=(  )
A.{0,1}B.{0,1,2}C.{-1,0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某班有学生60人,现用系统抽样的方法,抽取一个容量为5的样本,已知座位号为3号,15号,39号,51号的同学都在样本中,那么样本中还有一位同学的座位号是(  )
A.20B.25C.27D.46

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知tan($\frac{π}{4}$+α)=1,则$\frac{2sinα+cosα}{3cosα-sinα}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设y=x+$\frac{1}{x-2}$(x>2).当x=a时,y有最小值,则a的值是(  )
A.4B.3C.1+$\sqrt{3}$D.1+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}中,a1=2,an+1=3an+3n
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,求证:Sn≥2恒成立.

查看答案和解析>>

同步练习册答案