精英家教网 > 高中数学 > 题目详情
8.已知扇形的周长是4cm,则扇形面积最大时候扇形的中心角弧度数是(  )
A.2B.1C.$\frac{1}{2}$D.3

分析 设扇形的中心角弧度数为α,半径为r,可得2r+αr=4,α=$\frac{4-2r}{r}$,因此S=$\frac{1}{2}$αr2=(2-r)r,再利用基本不等式的性质即可得出.

解答 解:设扇形的中心角弧度数为α,半径为r,
则2r+αr=4,∴α=$\frac{4-2r}{r}$,
∴S=$\frac{1}{2}$αr2=$\frac{1}{2}$×$\frac{4-2r}{r}$×r2=(2-r)r≤($\frac{2-r+r}{2}$)2=1,
当且仅当2-r=r,解得r=1时,扇形面积最大.
此时α=2.
故选:A.

点评 本题考查了扇形的面积与弧长公式、基本不等式的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.数列{an}各项均为正数,a1=$\frac{1}{2}$,且对任意的n∈N*,都有an+1=an+λan2(λ>0).
(1)取λ=$\frac{1}{{{a_{n+1}}}}$,求证:数列$\left\{{\frac{{{a_{n+1}}}}{a_n}}\right\}$是等比数列,并求数列{an}的通项公式;
(2)若λ=$\frac{1}{2016}$,是否存在n∈N*,使得an>1,若存在,试求出n的最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设x,y为非零实数,a>0,且a≠1,给出下列式子或运算:
①logax2=3logax;
②loga|xy|=loga|x|•loga|y|;
③若e=lnx,则x=e2
④若lg(lny)=0,则y=e;
⑤若${2^{1+{{log}_4}x}}$=16,则x=64.
其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列关系中正确的是(  )
A.$\sqrt{2}$∈QB.|-3|∉ZC.$\sqrt{4}$∈ND.π∉R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.阅读如图所示程序框图.若输入的x=3,则输出的y的值为(  )
A.40B.30C.25D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若a,b是异面直线,P是a,b外的一点,有以下四个命题
①过P点一定存在直线l与a,b都相交;
②过P点一定存在平面与a,b都平行;
③过P点可作直线与a,b都垂直;
④过P点可作直线与a,b所成角都等于50°.
这四个命题中正确命题的序号是(  )
A.B.C.③④D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数$y=\frac{x}{1-cosx}$的导数是(  )
A.$\frac{1-cosx-xsinx}{1-cosx}$B.$\frac{1-cosx-xsinx}{{{{(1-cosx)}^2}}}$
C.$\frac{1-cosx+sinx}{{{{(1-cosx)}^2}}}$D.$\frac{1-cosx+xsinx}{{{{(1-cosx)}^2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线${\frac{x}{3}^2}-\frac{y^2}{6}=-1$的焦点分别为F1、F2,点P在双曲线上.若∠F1PF2=60°,则△F1PF2的面积为(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.$3\sqrt{3}$D.$6\sqrt{3}$

查看答案和解析>>

同步练习册答案