精英家教网 > 高中数学 > 题目详情

【题目】已知函数有三个不同的零点 (其中),则的值为( )

A. B. C. D.

【答案】D

【解析】f(x)=0,分离变量可得a=

g(x)=

g′(x)==0,得x=1x=e.

x(0,1)时,g′(x)0;当x(1,e)时,g′(x)0;当x(e,+∞)时,g′(x)0.

g(x)在(0,1),(e,+∞)上为减函数,在(1,e)上为增函数.

0x11x2ex3

a==,令μ=

a=﹣μ,即μ2+(a﹣1)μ+1﹣a=0,

μ1+μ2=1﹣a0,μ1μ2=1﹣a0,

对于μ=,μ′=

则当0xe时,μ′0;当xe时,μ′0.而当xe时,μ恒大于0.

画其简图,

不妨设μ1μ2,则μ1=,μ2==3

(1﹣2(1﹣)(1﹣)=(1﹣μ12(1﹣μ2)(1﹣μ3

=[(1﹣μ1)(1﹣μ2]2=[1﹣(1﹣a)+(1﹣a)]2=1.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】两城相距,在两城之间距处建一核电站给两城供电,为保证城市安全,核电站距城市距离不得小于 .已知供电费用等于供电距离的平方与供电量(亿度)之积的倍,若城供电量为每月20亿度,城供电量为每月10亿度.

(1)把月供电总费用表示成的函数;

(2)核电站建在距城多远,才能使供电总费用最少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海上某货轮在A处看灯塔B在货轮的北偏东75°,距离为12海里;在A处看灯塔C在货轮的北偏西30°,距离为8海里;货轮向正北由A处行驶到D处时看灯塔B在货轮的北偏东120°.(要画图)
(1)A处与D处之间的距离;
(2)灯塔C与D处之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 函数f(x)=x3+(m﹣4)x2﹣3mx+(n﹣6)x∈R的图象关于原点对称,其中m,n为实常数.
(1)求m,n的值;
(2)试用单调性的定义证明:f(x)在区间[﹣2,2]上是单调函数;
(3)当﹣2≤x≤2 时,不等式f(x)≥(n﹣logma)logma恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知海岛A到海岸公路BC的距离AB=50km,B,C间的距离为100km,从A到C必须先坐船到BC上的某一点D,航速为25km/h,再乘汽车到C,车速为50km/h,记∠BDA=θ
(1)试将由A到C所用的时间t表示为θ的函数t(θ);
(2)问θ为多少时,由A到C所用的时间t最少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列函数的定义域
(1)y= +
(2)y=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】轴截面是边长为4 的等边三角形的圆锥的直观图如图所示,过底面圆周上任一点作一平面α,且α与底面所成的二面角为 ,已知α与圆锥侧面交线的曲线为椭圆,则此椭圆的离心率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2x,g(x)=ax+2(a>0),且对任意的x1∈[﹣1,2],都存在x2∈[﹣1,2],使f(x2)=g(x1),则实数a的取值范围是(
A.[3,+∞)
B.(0,3]
C.[ ,3]
D.(0, ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C的对边分别是a,b,c,已知2cosA(bcosC+ccosB)=a.
(1)求角A;
(2)若a= ,b+c=5,求△ABC的面积.

查看答案和解析>>

同步练习册答案