精英家教网 > 高中数学 > 题目详情
精英家教网如图,四边形ABCD是边长为2的正方形,△ABE为等腰三角形,AE=BE,平面ABCD⊥平面ABE,点F在CE上,且BF⊥平面ACE.
(Ⅰ)判断平面ADE与平面BCE是否垂直,并说明理由;
(Ⅱ)求点D到平面ACE的距离.
分析:(Ⅰ)先证明BC⊥平面ABE,然后说明平面ADE⊥平面BCE.
(Ⅱ)法一:连接BD交AC与点M,则点M是BD的中点,说明点D与点B到平面ACE的距离相等.转化为求B到平面ACE的距离,解Rt△CBE,即可.
法二:连接BD交AC与点M,说明BF为点B到平面ACE的距离,应用VD-ACE=VE-ACD,求出相关数据即可求出点D到平面ACE的距离.
解答:精英家教网解:(Ⅰ)因为BF⊥平面ACE,所以BF⊥AE.(2分)
因为平面ABCD⊥平面ABE,BC⊥AB,
平面ABCD∩平面ABE=AB,所以BC⊥平面ABE,
从而BC⊥AE.(5分)
于是AE⊥平面BCE,故平面ADE⊥平面BCE.(6分)

(Ⅱ)方法一:连接BD交AC与点M,则点M是BD的中点,
所以点D与点B到平面ACE的距离相等.
因为BF⊥平面ACE,所以.(8分)
因为AE⊥平面BCE,所以AE⊥BE.
又AE=BE,所以△AEB是等腰直角三角形.
因为AB=2,所以BE=2sin45°=
2
.(9分)
在Rt△CBE中,CE=
BC2+BE2
=
6
.(10分)
所以BF=
BC×BE
CE
=
2
2
6
=
2
3
3

故点D到平面ACE的距离是
2
3
3


方法二:过点E作EG⊥AB,垂足为G,
因为平面ABCD⊥平面ABE,所以EG⊥平面ABCD.
因为AE⊥平面BCE,所以AE⊥BE.又AE=BE,
所以△AEB是等腰直角三角形,
从而G为AB的中点.又AB=2,所以EG=1.(8分)
因为AE⊥平面BCE,所以AE⊥EC.
又AE=BE=2sin45°=
2
,CE=
BC2+BE2
=
6
.(.(10分)
设点D到平面ACE的距离为h,因为VD-ACE=VE-ACD
1
3
S△ACE• h= 
1
3
S△ACD •EG

所以h=
1
2
AD•DC•EG
1
2
AE• EC
=
2×2×1
2
×
6
=
2
3
3

故点D到平面ACE的距离是
2
3
3
.(12分)
点评:本题考查平面与平面垂直的判定,棱锥的体积,点到平面的距离,考查逻辑思维能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四边形ABCD与A′ABB′都是边长为a的正方形,点E是A′A的中点,A′A⊥平面ABCD.
(1) 求证:A′C∥平面BDE;
(2) 求证:平面A′AC⊥平面BDE
(3) 求平面BDE与平面ABCD所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(Ⅰ)证明PQ⊥平面DCQ;
(Ⅱ)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为矩形,且AD=2,AB=1,PA⊥平面ABCD,PA=1,E为BC的中点.
(1)求点C到面PDE的距离;  
(2)求二面角P-DE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD内接于⊙O,如果它的一个外角∠DCE=64°,那么∠BOD
128°
128°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(1)证明:平面PQC⊥平面DCQ;
(2)求二面角D-PQ-C的余弦值.

查看答案和解析>>

同步练习册答案