精英家教网 > 高中数学 > 题目详情

(本小题满分14分)如图,正方体的棱长为2EAB的中点.(Ⅰ)求证:(Ⅱ)求异面直线BD1CE所成角的余弦值;(Ⅲ)求点B到平面的距离.

(Ⅰ)  见解析  (Ⅱ)   (Ⅲ)


解析:

法一:(1)连接BD,由已知有   

  得…………1分

又由ABCD是正方形,得:……2分      ∵相交,∴……3分

(2)延长DC至G,使CG=EB,,连结BG、D1G ,∵CG∥EB ,∴四边形EBGC是平行四边形.                                 

∴BG∥EC.   ∴就是异面直线BD1与CE所成角…………………………5分

中,    …………………6分

 

异面直线 CE所成角的余弦值是 ………8分

(3)∵       又∵     ∴ 点E到的距离,有:    ,…………11分

 又由  ,  设点B到平面的距离为

 , 有, 所以点B到平面的距离为…14分

解法二:(1)见解法一…3分

(2)以D为原点,DA、DC、轴建立空间直角坐标系,则有B(2,2,0)、(0,0,2)、E(2,1,0)、C(0,2,0)、(2,0,2)∴(-2,-2,2),(2,-1,0)………5分

……7分即余弦值是   8分

(3)设平面的法向量为, 有:,…8分

由:(0,1,-2),(2,-1,0)………9分

可得:,令,得  ………11分

(0,1,0)有:点B到平面的距离为…14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案