精英家教网 > 高中数学 > 题目详情

【题目】设常数a使方程sinx+ cosx=a在闭区间[0,2π]上恰有三个解x1 , x2 , x3 , 则x1+x2+x3=

【答案】
【解析】解:sinx+ cosx=2( sinx+ cosx)=2sin(x+ )=a,
如图方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a= 时,直线与三角函数图象恰有三个交点,
令sin(x+ )= ,x+ =2kπ+ ,即x=2kπ,或x+ =2kπ+ ,即x=2kπ+
∴此时x1=0,x2= ,x3=2π,
∴x1+x2+x3=0+ +2π=
所以答案是:

【考点精析】认真审题,首先需要了解两角和与差的正弦公式(两角和与差的正弦公式:).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某二手车交易市场对某型号的二手汽车的使用年数与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:

使用年数

2

4

6

8

10

售价

16

13

9.5

7

4.5

(1)试求关于的回归直线方程:(参考公式:, .)

(2)已知每辆该型号汽车的收购价格为万元,根据(1)中所求的回归方程,预测为何值时,销售一辆该型号汽车所获得的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中混装着9个大小相同的球(编号不同),其中5只白球,4只红球,为了把红球与白球区分开来,采取逐只抽取检查,若恰好经过5次抽取检查,正好把所有白球和红球区分出来了,则这样的抽取方式共有__________种(用数字作答) .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.

(1)证明:P是线段BC的中点;
(2)求二面角A﹣NP﹣M的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的一元二次函数,分别从集合中随机取一个数得到数对

1)若,求函数有零点的概率;

2)若 ,求函数在区间上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】身体素质拓展训练中,人从竖直墙壁的顶点A沿光滑杆自由下滑到倾斜的木板上(人可看作质点),若木板的倾斜角不同,人沿着三条不同路径ABACAD滑到木板上的时间分别为t1t2t3,若已知ABACAD与板的夹角分别为70o90o105o,则(

A. t1>t2>t3 B. t1<t2<t3 C. t1=t2=t3 D. 不能确定t1t2t3之间的关系

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数.

(1)全体排成一行,其中男生必须排在一起;

(2)全体排成一行,男、女各不相邻;

(3)全体排成一行,其中甲不在最左边,乙不在最右边;

(4)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点且离心率为

(I)求椭圆的方程;

(Ⅱ)过椭圆的右顶点做相互垂直的两条直线,分别交椭圆异于点),问直线是否通过定点?若过定点,求出定点坐标若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用五点法画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:

1)请将上表数据补充完整;函数的解析式为 (直接写出结果即可);

2)根据表格中的数据作出一个周期的图象;

3)求函数在区间上的最大值和最小值.

查看答案和解析>>

同步练习册答案