精英家教网 > 高中数学 > 题目详情

【题目】(本小题只理科做,满分14分)如图,已知平面,,△是正三角形,,的中点.

1)求证:平面;

2)求证:平面平面;

3)求平面与平面所成锐二面角的大小.

【答案】1)见解析;(2)见解析;(3.

【解析】

试题分析:(I)要证明线面垂直,就是要在平面BCE中找一条与AF垂直的直线,这条直线容易看出是平面BAF与平面BCE的交线,当然根据已知条件,辅助线可直接取CE中点P,直线BP就是我们要找的平等线;(II)本证面面垂直,先要证线面垂直,先看题中有没有已知的垂直关系,发现有直线AF与平面CDE垂直,而在(I)的证明中有BP//AFBP就是我们要找的线面垂直中的线;(III)平面BCE与平面ACD有一个公共点C,依据二面角的定义,要选作出二面角的棱,然后作出平面角,才能求出二面角的大小,但由(I)题中有两两垂直的三条直线FAFPAD,故我们可建立空间直角坐标系,通过空间向量来求二面角大小.

试题解析:(I)解:取CE中点P,连结FPBP∵FCD的中点,

∴FP//DE,且FP=AB//DE,且AB=

∴AB//FP,且AB=FP∴ABPF为平行四边形,∴AF//BP

∵AF平面BCEBP平面BCE∴AF//平面BCE3

II∵△ACD为正三角形,∴AF⊥CD∵AB⊥平面ACDDE//AB

∴DE⊥平面ACD,又AF平面ACD∴DE⊥AF。又AF⊥CDCD∩DE=D

∴AF⊥平面CDE。又BP//AF∴BP⊥平面CDE

∵BP平面BCE平面BCE⊥平面CDE7

III)由(II),以F为坐标原点,FAFDFP所在的直线分别为xyz轴(如图),建立空间直角坐标系F—xyz.AC=2,则C0—10),

显然,为平面ACD的法向量。

设平面BCE与平面ACD所成锐二面角为

即平面BCE与平面ACD所成锐二面角为45°13

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】12分)已知函数fx=

1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.

2)求该函数在区间[1,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=|x﹣2|+|x+1|+2|x+2|.
(Ⅰ)求证:f(x)≥5;
(Ⅱ)若对任意实数x,15﹣2f(x)<a2+ 都成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个化肥厂生产甲种混合肥料1车皮、乙种混合肥料1车皮所需要的主要原料如表:

原料
种类

磷酸盐(单位:吨)

硝酸盐(单位:吨)

4

20

2

20

现库存磷酸盐8吨、硝酸盐60吨,计划在此基础上生产若干车皮的甲、乙两种混合肥料.
(1)设x,y分别表示计划生产甲、乙两种肥料的车皮数,试列出x,y满足的数学关系式,并画出相应的平面区域;
(2)若生产1车皮甲种肥料,利润为3万元;生产1车皮乙种肥料,利润为2万元.那么分别生产甲、乙两种肥料多少车皮,能够产生最大利润?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是二次函数,其函数图像经过(0,2),时取得最小值1.

(1)求的解析式.

(2)求在[kk+1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线方程为.

1)求的解析式;

(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,2an=an﹣1+an+1(n≥2),且a2=10,a5=﹣5,求{an}前n项和Sn的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为

优秀

非优秀

合计

甲班

10

乙班

30

合计

110

(1)请完成上面的列联表;

(2)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”;

(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.

参考公式及数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥V-ABC,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BCAC=BC=,O,M分别为AB,VA的中点.

(1)求证:平面MOC⊥平面VAB.

(2)求三棱锥V-ABC的体积.

查看答案和解析>>

同步练习册答案