精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列{an}满足a2=3,a3+a5=2
(1)求{an}的通项公式;
(2)求{an}的前n项和Sn及Sn的最大值.

【答案】
(1)解:设数列{an}公差为d,

∵等差数列{an}满足a2=3,a3+a5=2,

解得a1=4,d=﹣1,

∴an=a1+(n﹣1)d=4+(n﹣1)×(﹣1)=5﹣n.


(2)解:∵等差数列{an}中,a1=4,d=﹣1,an=5﹣n,

∴Sn= =

=﹣ =﹣

∵n∈N*

∴n=4或n=5时,Sn取最大值10.


【解析】(1)设数列{an}公差为d,利用等差数列通项公式列出方程组,求出首项和公差,由此能求出{an}的通项公式.(2)由等差数列{an}中,a1=4,d=﹣1,an=5﹣n,求出Sn,利用配方法能求出n=4或n=5时,Sn取最大值10.
【考点精析】通过灵活运用等差数列的通项公式(及其变式)和等差数列的前n项和公式,掌握通项公式:;前n项和公式:即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】等比数列{an}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+…+log3a10=(
A.5
B.9
C.log345
D.10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x||x﹣1|<2},B={x|x2﹣2mx+m2﹣1<0}.
(1)当m=3时,求A∩B;
(2)若A∪B=A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5.
(1)求第四小组的频率;
(2)参加这次测试的学生人数是多少?
(3)在这次测试中,学生跳绳次数的中位数落在第几小组内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(m,cos2x), =(sin2x,n),设函数f(x)= ,且y=f(x)的图象过点( )和点( ,﹣2).
(1)求m,n的值;
(2)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象.若y=g(x)的图象上各最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥P﹣ABCD中,底面ABCD为直角梯形,AB⊥AD,BC∥AD,且AB=BC=2,AD=3,PA⊥平面ABCD且PA=2,则PB与平面PCD所成角的正弦值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3000名学生在该次数学考试中成绩小于60分的学生数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列不等式的解集是空集的是(
A.x2﹣x+1>0
B.﹣2x2+x+1>0
C.2x﹣x2>5
D.x2+x>2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位N名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.下表是年龄的频率分布表.

区间

[25,30)

[30,35)

[35,40)

[40,45)

[45,50]

人数

25

a

b


(1)求正整数a,b,N的值;
(2)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?
(3)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.

查看答案和解析>>

同步练习册答案