分析 (1)根据抛物线的性质即可求出;
(2)联立方程组,根据题意可得$\left\{\begin{array}{l}{△=(1-8a)^{2}-16(4{a}^{2}-4)>0}\\{-\frac{1-8a}{4}>0}\\{{a}^{2}-1>0}\end{array}\right.$,解得即可.
解答 解:(1)抛物线y2=2px(p>0)上一点M(1,y)到焦点F的距离为$\frac{17}{16}$.
则1+$\frac{p}{2}$=$\frac{17}{16}$,
解得p=$\frac{1}{8}$,
(2)由(1)以及已知得$\left\{\begin{array}{l}{{y}^{2}=\frac{1}{4}x}\\{(x-a)^{2}+{y}^{2}=1}\end{array}\right.$,
即4x2+(1-8a)x+4a2-4=0有两个不相等的实数根,
则$\left\{\begin{array}{l}{△=(1-8a)^{2}-16(4{a}^{2}-4)>0}\\{-\frac{1-8a}{4}>0}\\{{a}^{2}-1>0}\end{array}\right.$,
解得1<a<$\frac{65}{16}$,
则实数a的取值范围为(1,$\frac{65}{16}$)
点评 本题考查圆与抛物线的位置关系,考查学生分析转化问题的能力,考查计算能力,正确合理转化是关键.
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $x=-\frac{π}{6}$ | B. | $x=-\frac{π}{4}$ | C. | $x=\frac{π}{3}$ | D. | $x=\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
日期 | 4月6日 | 4月7日 | 4月8日 | 4月9日 | 4月10日 | 4月11日 |
平均气温x(℃) | 10 | 11 | 13 | 12 | 8 | 6 |
一天生长的长度y(mm) | 22 | 25 | 29 | 26 | 16 | 12 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com