精英家教网 > 高中数学 > 题目详情

设函数数学公式
(Ⅰ)求函数f(x)的最大值和最小正周期;
(Ⅱ)设A,B,C为△ABC的三个内角,若cosB=数学公式,f(数学公式)=-数学公式,求sinA.

解:(Ⅰ)=+=
故函数f(x)的最大值为 ,最小正周期 T==π.
(Ⅱ)f()==-,∴sinC=,又C为锐角,故C=
∵cosB=,∴sinB=.∴sinA=sin(B+C)=sinBcosC+cosBsinC=
分析:(Ⅰ)利用两角和的余弦公式化简函数f(x)为,可得最大值为 ,最小正周期 T=
(Ⅱ)由f()=-求得C=,由cosB=求得 sinB,利用sinA=sin(B+C)=sinBcosC+cosBsinC 求出结果.
点评:本题考查两角和的余弦公式、正弦公式的应用,求出角C是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
3
sinxcosx+cos2x+a
-
1
2
,当x∈[-
π
6
π
3
]
时,函数f(x)的最大值与最小值的和为
1
2

(I)求函数f(x)的最小正周期及单调递减区间;
(II)作出y=f(x)在x∈[0,π]上的图象.(不要求书写作图过程)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2sin(2x+
π4
)+1,
(I)用五点法画出它在一个周期内的闭区间上的图象;
(II)求函数f(x)的最小正周期及函数f(x)的最大值
(III)求函数f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知空间向量
a
=(sinα-1,1)
b
=(1,1-cosα)
a
b
=
1
5
,α∈(0,
π
2
).
(1)求sin2α及sinα,cosα的值;
(2)设函数f(x)=5cos(2x-α)+cos2x(x∈R),求f(x)的最小正周期和图象的对称中心坐标;
(3)求函数f(x)在区间[-
11π
24
,-
24
]
上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2+bx+c,(-4≤x<0)
-x+3,(x≥0)
,若f(-4)=f(0),f(-2)=-1,
(1)求函数f(x)的解析式,
(2)画出函数f(x)的图象,并指出函数的定义域和值域.
(3)解不等式xf(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•朝阳区二模)设函数f(x)=2sinxcosx-cos(2x-
π
6
).
(Ⅰ)求函数f(x)的最小正周期; 
(Ⅱ)当x∈[0,
3
]时,求函数f(x)的最大值及取得最大值时的x的值.

查看答案和解析>>

同步练习册答案