精英家教网 > 高中数学 > 题目详情
1.已知a<1,解关于x的不等式(a-1)x2+2(2-a)x-4>0.

分析 原不等式可化为:(x-$\frac{2}{1-a}$)(x-2)<0,分类讨论,得到不等式的解集.

解答 解:∵a<1,∴a-1<0,
则原不等式可化为:(x-$\frac{2}{1-a}$)(x-2)<0,
故当0<a<1时,原不等式的解集为(2,$\frac{2}{1-a}$),
当a=0时,原不等式的解集为∅,
当a<0时,原不等式的解集为($\frac{2}{1-a}$,2),

点评 本题考查了分类讨论方法、一元二次不等式的解法等基础知识与基本技能方法,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知抛物线y2=8x,P是抛物线的动弦AB的中点.
(Ⅰ)当P的坐标为(2,3)时,求直线AB的方程;
(Ⅱ)当直线AB的斜率为1时,求线段AB的垂直平分线在x轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)满足$f(x+1)=\frac{2f(x)}{f(x)+2}$,f(1)=1,(x∈R,x≠-1).
(1)分别计算f(2)、f(3)、f(4)的值,并猜函数f(x)的表达式;(不需要证明)
(2)求集合A={x|f(x)<x}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知9x-3x+1-k≥0在[1,2]上恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知平面内一动点P(x,y)(x≥0)到点F(1,0)的距离与点P到y轴的距离的差等于1,
(1)求动点P的轨迹C的方程;
(2)过点F的直线l与轨迹C相交于不同于坐标原点O的两点A,B,求△OAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在数列{an}中,a1=2,2an+1=2an+1,n∈N+,则a2015的值为1009.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,过圆O外一点P引圆的两条割线分别交圆O于A、B、C、D四点.
(Ⅰ)若AC=AP,求证:BD=PD.
(Ⅱ)若PA=$\frac{1}{2}$AB,PC=CD,求$\frac{AB}{CD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某盒里有20个球,其半径大小的频率分布直方图如图所示.
(Ⅰ)下表是这些球的半径的频数分布表,求正整数a,b的值;
区间[75,80)[80,85)[85,90)[90,95)[95,100]
人数1a76b
(Ⅱ)半径在[90,95)和[95,100)里的球分别用1,2,3,…标记,现从这两个区间里的球中各摸出一球.
①若用x表示从区间[90,95)中摸出的球的号码,y表示从区间[95,100)中摸出的球的号码,请写出数对(x,y)的所有情形;
②求这两球的号码之和大于5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若复数$\frac{a+i}{b-3i}$(a,b∈R)对应的点在虚轴上,则ab的值是(  )
A.-15B.3C.-3D.15

查看答案和解析>>

同步练习册答案