【题目】已知f(x)是定义在上的单调函数,且对任意的x∈都有,则方程的一个根所在的区间是( )
A. (0,1) B. (1,2) C. (2,3) D. (3,4)
【答案】D
【解析】
由题意,可知f(x)-x3是定值令t=f(x)-x3,得出f(x)=x3+t,再由f(t)=t3+t=2求出t的值即可得出f(x)的表达式,求出函数的导数,即可求出f(x)-f′(x)=2的解所在的区间选出正确选项
由题意,可知f(x)-x3是定值,不妨令t=f(x)-x3,则f(x)=x3+t
又f(t)=t3+t=2,整理得(t-1)(t2+t+2)=0,解得t=1
所以有f(x)=x3+1
所以f(x)-f′(x)=x3+1-3x2=2,令F(x)=x3-3x2-1
可得F(3)=-1<0,F(4)=8>0,即F(x)=x3-3x2-1零点在区间(3,4)内
所以f(x)-f′(x)=2的解所在的区间是(3,4)
故选:D.
科目:高中数学 来源: 题型:
【题目】已知极坐标系中,点,曲线的极坐标方程为,点在曲线上运动,以极点为坐标原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程为(为参数).
(1)求直线的普通方程与曲线的参数方程;
(2)求线段的中点到直线的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数对定义域内的每一个值,在其定义域内都存在唯一的,使成立,则称该函数为“依赖函数”.
(1)判断函数是否为“依赖函数”,并说明理由;
(2)若函数在定义域()上为“依赖函数”,求的取值范围;
(3)已知函数在定义域上为“依赖函数”.若存在实数,使得对任意的,不等式恒成立,求实数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定实数 t,已知命题 p:函数 有零点;命题 q: x∈[1,+∞) ≤4-1.
(Ⅰ)当 t=1 时,判断命题 q 的真假;
(Ⅱ)若 p∨q 为假命题,求 t 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记X表示学生的考核成绩,并规定X≥85为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图.
(1)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率;
(2)从图中考核成绩满足X[70,79]的学生中任取3人,设Y表示这3人重成绩满足≤10的人数,求Y的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】互联网时代的今天,移动互联快速发展,智能手机技术不断成熟,价格却不断下降,成为了生活中必不可少的工具中学生是对新事物和新潮流反应最快的一个群体之一逐渐地,越来越多的中学生开始在学校里使用手机手机特别是智能手机在让我们的生活更便捷的同时会带来些问题,同学们为了解手机在中学生中的使用情况,对本校高二年级100名同学使用手机的情况进行调查针对调查中获得的“每天平均使用手机进行娱乐活动的时间”进行分组整理得到如图4的饼图、注:图中2,单位:小时代表分组为i的情况
求饼图中a的值;
假设同一组中的每个数据可用给定区间的中点值代替,试估计样本中的100名学生每天平均使用手机的平均时间在第几组?只需写出结论
从该校随机选取一名同学,能否根据题目中所给信息估计出这名学生每天平均使用手机进行娱乐活动小于小时的概率,若能,请算出这个概率;若不能,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F是抛物线的焦点,点M是抛物线上的定点,且.
(1)求抛物线C的方程;
(2)直线AB与抛物线C交于不同两点,直线与AB平行,且与抛物线C相切,切点为N,试问△ABN的面积是否是定值.若是,求出这个定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分10分)一位网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的五种商品有购买意向.已知该网民购买两种商品的概率均为,购买两种商品的概率均为,购买种商品的概率为.假设该网民是否购买这五种商品相互独立.
(1)求该网民至少购买4种商品的概率;
(2)用随机变量表示该网民购买商品的种数,求的概率分布和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中错误的是( )
A. 从某社区65户高收入家庭,280户中等收入家庭,105户低收入家庭中选出100户调查社会购买力的某一项指标,应采用的最佳抽样方法是分层抽样
B. 线性回归直线一定过样本中心点
C. 若两个随机变量的线性相关性越强,则相关系数的值越接近于1
D. 若一组数据1、、2、3的众数是2,则这组数据的中位数是2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com