【题目】在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的极坐标方程;
(2)射线与曲线分别交于两点(异于原点),定点,求的面积.
【答案】(1);(2).
【解析】
(1)将曲线C1化成直角坐标方程,再化成极坐标方程;(2)先求出定点M到射线的距离
为三角形的高,再由极坐标方程求出弦长|AB|为三角形的底,根据面积公式求解即可.
(1)解:曲线C1直角坐标方程为:x2+y2﹣4y=0,
由ρ2=x2+y2,ρsinθ=y得:
曲线C1极坐标方程为ρ=4sinθ,
(2)法一:M到射线θ=的距离为d=2sin=,
|AB|=ρB﹣ρA=4(sin﹣cos)=2(﹣1)
则S△MAB=|AB|×d=3﹣.
法二:
解:将θ=(ρ≥0)化为普通方程为y=x(x≥0),
∵曲线C2的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,
由ρ2=x2+y2,ρcosθ=x得:
曲线C2的直角坐标方程为x2+y2﹣4x=0,
由得∴A(,3)
得∴B(1,),
,
点M到直线,
∴.
科目:高中数学 来源: 题型:
【题目】李克强总理在很多重大场合都提出“大众创业,万众创新”.某创客,白手起家,2015年一月初向银行贷款十万元做创业资金,每月获得的利润是该月初投入资金的.每月月底需要交纳房租和所得税共为该月全部金额(包括本金和利润)的,每月的生活费等开支为3000元,余款全部投入创业再经营.如此每月循环继续.
(1)问到2015年年底(按照12个月计算),该创客有余款多少元?(结果保留至整数元)
(2)如果银行贷款的年利率为,问该创客一年(12个月)能否还清银行贷款?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】按照如下规则构造数表:第一行是:2;第二行是:;即3,5,第三行是:即4,6,6,8;(即从第二行起将上一行的数的每一项各项加1写出,再各项加3写出)
2
3,5
4,6,6,8
5,7,7,9,7,9,9,11
……………………………………
若第行所有的项的和为.
(1)求;
(2)试求与的递推关系,并据此求出数列的通项公式;
(3)设,求和的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】所谓声强,是指声音在传播途径上每1平方米面积上的声能流密度,用I表示,人类能听到的声强范围很广,其中能听见的1000Hz声音的声强(约10﹣12W/m2)为标准声强,记作I0,声强I与标准声强I0之比的常用对数称作声强的声强级,记作L,即L=lg,声强级L的单位名称为贝(尔),符号为B,取贝(尔)的十分之一作为响度的常用单位,称为分贝(尔).简称分贝(dB).《三国演义》中有张飞喝断当阳桥的故事,设张飞大喝一声的响度为140dB.一个士兵大喝一声的响度为90dB,如果一群士兵同时大喝一声相当一张飞大喝一声的响度,那么这群土兵的人数为( )
A.1万B.2万C.5万D.10万
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求直线的普通方程和曲线的直角坐标方程;
(Ⅱ)设为曲线上的点,,垂足为,若的最小值为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列.如果数列满足, ,其中,则称为的“衍生数列”.
(Ⅰ)若数列的“衍生数列”是,求;
(Ⅱ)若为偶数,且的“衍生数列”是,证明:的“衍生数列”是;
(Ⅲ)若为奇数,且的“衍生数列”是,的“衍生数列”是,….依次将数列,,,…的第项取出,构成数列 .证明:是等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足:,,且.
(1)求数列前20项的和;
(2)求通项公式;
(3)设的前项和为,问:是否存在正整数、,使得?若存在,请求出所有符合条件的正整数对,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,A、B是海岸线OM、ON上两个码头,海中小岛有码头Q到海岸线OM、ON的距离分别为、,测得,,以点O为坐标原点,射线OM为x轴的正半轴,建立如图所示的直角坐标系,一艘游轮以小时的平均速度在水上旅游线AB航行(将航线AB看作直线,码头Q在第一象限,航线BB经过点Q).
(1)问游轮自码头A沿方向开往码头B共需多少分钟?
(2)海中有一处景点P(设点P在平面内,,且),游轮无法靠近,求游轮在水上旅游线AB航行时离景点P最近的点C的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com