精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求曲线的极坐标方程

(2)射线与曲线分别交于两点(异于原点),定点的面积.

【答案】(1);(2).

【解析】

(1)将曲线C1化成直角坐标方程,再化成极坐标方程;(2)先求出定点M到射线的距离

为三角形的高,再由极坐标方程求出弦长|AB|为三角形的底,根据面积公式求解即可.

(1)解:曲线C1直角坐标方程为:x2+y2﹣4y=0,

ρ2=x2+y2,ρsinθ=y得:

曲线C1极坐标方程为ρ=4sinθ,

(2)法一:M到射线θ=的距离为d=2sin=

|AB|B﹣ρA=4(sin﹣cos)=2(﹣1)

SMAB=|ABd=3﹣

法二:

解:将θ=(ρ0)化为普通方程为y=x(x0),

∵曲线C2的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,

ρ2=x2+y2,ρcosθ=x得:

曲线C2的直角坐标方程为x2+y2﹣4x=0,

A(,3)

B(1,),

M到直线

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】李克强总理在很多重大场合都提出大众创业,万众创新.某创客,白手起家,2015年一月初向银行贷款十万元做创业资金,每月获得的利润是该月初投入资金的.每月月底需要交纳房租和所得税共为该月全部金额(包括本金和利润)的,每月的生活费等开支为3000元,余款全部投入创业再经营.如此每月循环继续.

1)问到2015年年底(按照12个月计算),该创客有余款多少元?(结果保留至整数元)

2)如果银行贷款的年利率为,问该创客一年(12个月)能否还清银行贷款?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】按照如下规则构造数表:第一行是:2;第二行是:;即35,第三行是:4668(即从第二行起将上一行的数的每一项各项加1写出,再各项加3写出)

2

3,5

4,6,6,8

5,7,7,9,7,9,9,11

……………………………………

若第行所有的项的和为

1)求

2)试求的递推关系,并据此求出数列的通项公式;

3)设,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】所谓声强,是指声音在传播途径上每1平方米面积上的声能流密度,用I表示,人类能听到的声强范围很广,其中能听见的1000Hz声音的声强(约1012W/m2)为标准声强,记作I0,声强I与标准声强I0之比的常用对数称作声强的声强级,记作L,即L=lg,声强级L的单位名称为贝(尔),符号为B,取贝(尔)的十分之一作为响度的常用单位,称为分贝(尔).简称分贝(dB.《三国演义》中有张飞喝断当阳桥的故事,设张飞大喝一声的响度为140dB.一个士兵大喝一声的响度为90dB,如果一群士兵同时大喝一声相当一张飞大喝一声的响度,那么这群土兵的人数为(  )

A.1B.2C.5D.10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间内存在零点.

1)求的范围;

2)设的两个零点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

(Ⅰ)求直线的普通方程和曲线的直角坐标方程;

(Ⅱ)设为曲线上的点,,垂足为,若的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列.如果数列满足 ,其中,则称的“衍生数列”.

(Ⅰ)若数列的“衍生数列”是,求

(Ⅱ)若为偶数,且的“衍生数列”是,证明:的“衍生数列”是

(Ⅲ)若为奇数,且的“衍生数列”是的“衍生数列”是,….依次将数列,…的第项取出,构成数列 .证明:是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:,且

1)求数列20项的和

2)求通项公式

3)设的前项和为,问:是否存在正整数,使得?若存在,请求出所有符合条件的正整数对,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是海岸线OMON上两个码头,海中小岛有码头Q到海岸线OMON的距离分别为,测得,以点O为坐标原点,射线OMx轴的正半轴,建立如图所示的直角坐标系,一艘游轮以小时的平均速度在水上旅游线AB航行(将航线AB看作直线,码头Q在第一象限,航线BB经过点Q.

1)问游轮自码头A沿方向开往码头B共需多少分钟?

2)海中有一处景点P(设点P平面内,,且),游轮无法靠近,求游轮在水上旅游线AB航行时离景点P最近的点C的坐标.

查看答案和解析>>

同步练习册答案