精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中,平面平面为等边三角形,,点的中点.

1)求证:平面

2)求二面角的余弦值.

【答案】(1)证明见解析(2)

【解析】

1)取中点,连结,证明四边形为平行四边形得到答案.

2)证明平面,如图建立空间直角坐标系,平面的法向量,面的法向量,计算夹角得到答案.

1)取中点,连结.

因为中点,所以.

因为.所以.

所以四边形为平行四边形,所以.

因为平面平面

所以平面.

2)取中点,连结.因为,所以.

因为平面平面,平面平面平面

所以平面,取中点,连结

.为原点,如图建立空间直角坐标系,

,则

.平面的法向量

设平面的法向量,由,得.

,则.由图可知,

二面角是锐二面角,所以二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】推进垃圾分类处理,是落实绿色发展理念的必然选择,也是打赢污染防治攻坚战的重要环节.为了解居民对垃圾分类的了解程度某社区居委会随机抽取1000名社区居民参与问卷测试,并将问卷得分绘制频率分布表如表:

得分

[3040

[4050

[5060

[6070

[7080

[8090

[90100]

男性人数

40

90

120

130

110

60

30

女性人数

20

50

80

110

100

40

20

1)从该社区随机抽取一名居民参与问卷测试试估计其得分不低于60分的概率:

2)将居民对垃圾分类的了解程度分为“比较了解”(得分不低于60分)和“不太了解”(得分低于60)两类,完成2×2列联表,并判断是否有95%的把握认为“居民对垃圾分类的了解程度”与“性别”有关?

不太了解

比较了解

合计

男性

女性

合计

3)从参与问卷测试且得分不低于80分的居民中,按照性别进行分层抽样,共抽取10人,现从这10人中随机抽取3人作为环保宣传队长,设3人中男性队长的人数为,求的分布列和期望.

附:

临界值表:

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在区间,使得,则称函数可等域函数,区间A为函数的一个可等域区间”.给出下列四个函数:①;②;③;④.其中存在唯一可等域区间可等域函数的个数是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥中,平面平面 则三棱锥的外接球的表面积为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示已知ABCD为梯形,AB∥CD,CD=2AB,M为线段PC上一点.

(1)设平面PAB∩平面PDC=l证明:AB∥l

(2)在棱PC上是否存在点M,使得PA∥平面MBD,若存在请确定点M的位置若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与椭圆交于两点,且以为直径的圆过椭圆的右顶点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市坚持农业与旅游融合发展,着力做好旅游各要素,完善旅游业态,提升旅游接待能力.为了给游客提供更好的服务,旅游部门需要了解游客人数的变化规律,收集并整理了月至月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图.根据该折线图,下列结论正确的是(

A.月接待游客量逐月增加

B.年接待游客量逐年增加

C.各年的月接待游客量高峰期大致在78

D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,指数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在第三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同的排课顺序共有(

A.12B.24C.36D.48

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,若存在区间使得

(Ⅰ)上是单调函数;

(Ⅱ)上的值域是

则称区间为函数倍值区间

下列函数中存在倍值区间的有______________(填上所有你认为正确的序号)

查看答案和解析>>

同步练习册答案