精英家教网 > 高中数学 > 题目详情

【题目】底面为菱形的直棱柱

中,

分别为棱

的中点.

(1)在图中作一个平面

,使得

,且平面

.(不必给出证明过程,只要求作出

与直棱柱

的截面).

(2)若

,求平面

与平面

的距离

.

【答案】(1)见解析;(2)

.

【解析】试题分析:(1)作面面平行,实质作线线平行,而线线平行的寻找往往利用平几知识,如三角形中位线、平行四边形性质等,本题中已有

,根据对称性在平面

中寻找另一组平行线,(2)利用向量投影可求两平面之间距离,先根据条件建立恰当直角坐标系,设立各点坐标,解方程组得平面

的法向量

,利用向量数量积求向量

方向上投影的绝对值,即为平面

与平面

的距离

.

试题解析:

(1)如图,取

的中点

,连接

,则平面

即为所求平面

.

(2)如图,连接

∵在直棱柱

中,底面为菱形,

∴分别以

轴,

为原点建立如图所示空间直角坐标系,

又∵所有棱长为2,

是平面

的一个法向量,则

,即

∴点

到平面

的距离

∴平面

与平面

的距离

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司试销一种成本单价为500元的新产品,规定试销时销售单价不低于成本单价,又不高于800元.经试销调查,发现销售量y()与销售单价x()之间的关系可近似看作一次函数ykxb(k≠0),函数图象如图所示.

(1)根据图象,求一次函数ykxb(k≠0)的表达式;

(2)设公司获得的毛利润(毛利润=销售总价-成本总价)S元.试问销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销售量是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,现从中随机抽取100人的数学与地理的水平测试成绩如下表:

成绩分为优秀、良好、及格三个等级;横向,纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有.

)若在该样本中,数学成绩优秀率是30%,求的值;

)已知,求数学成绩为优秀的人数比及格的人数少的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016·桂林高二检测)如图所示在四边形ABCDAB=AD=CD=1BD=BDCD将四边形ABCD沿对角线BD折成四面体A′-BCD使平面A′BD⊥平面BCD则下列结论正确的是________.

(1)A′C⊥BD.(2)∠BA′C=90°.

(3)CA′与平面A′BD所成的角为30°.

(4)四面体A′-BCD的体积为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2014陕西理8】原命题为“若互为共轭复数,则”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是(

A. 真,假,真 B. 假,假,真

C. 真,真,假 D. 假,假,假

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过原点的直线与椭圆交于两点,点为椭圆上不同于的一点,直线的斜率均存在,且直线的斜率之积为.

(1)求椭圆的离心率;

(2)设分别为椭圆的左、右焦点,斜率为的直线经过椭圆的右焦点,且与椭圆交于两点.若点在以为直径的圆内部,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)向量a=(x,1),b=(1,y),c=(2,-4),且a⊥c,b∥c,求|a+b|和a+b与c的夹角;

(2)设O为△ABC的外心,已知AB=3,AC=4,非零实数x,y满足=x+y,且x+2y=1,求cos ∠BAC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某渔场有一边长为20m的正三角形湖面ABC(如图所示),计划筑一条笔直的堤坝DE将水面分成面积相等的两部分,以便进行两类水产品养殖试验(DAB上,EAC上).

(1)为了节约开支,堤坝应尽可能短,请问该如何设计?堤坝最短为多少?

(2)将DE设计为景观路线,堤坝应尽可能长,请问又该如何设计?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品的进价为每件元,售价为每件元,每个月可卖出件;如果每件商品在该售价的基础上每上涨元,则每个月少卖件(每件售价不能高于元).设每件商品的售价上涨元(为正整数),每个月的销售利润为元.

(1)求的函数的函数关系式并直接写出自变量的取值范围;

(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

查看答案和解析>>

同步练习册答案