精英家教网 > 高中数学 > 题目详情
已知函数g(x)=
-1,x>0
0,x=0
1,x<0
,函数f(x)=x2?g(x),则满足不等式f(a-2)+f(a2)>0的实数a的取值范围是(  )
A、(-2,1)
B、(-1,2)
C、(-∞,-2)∪(1,+∞)
D、(-∞,-1)∪(2,+∞)
分析:根据分段函数的表达式,分别讨论a的取值范围解不等式即可.
解答:解:①若a=0,则f(a2)=f(0)=0,此时不等式f(a-2)+f(a2)>0等价为f(-2)>0,
∴4g(-2)=4>0,不等式成立.
②若a=2,则f(a-2)=f(0)=0,f(a2)=f(4)=16g(4)=-16,
此时不等式f(a-2)+f(a2)>0等价为f(0)+f(4)>0,
即0-16>0,此时不等式不成立.
③若a-2>0,即a>2时,
不等式f(a-2)+f(a2)>0等价为:
(a-2)2•g(a-2)+a4g(a2)=-(a-2)2-a4>0,
即(a-2)2+a4<0,此时不等式不成立.
④若a-2<0,即a<2时,
不等式f(a-2)+f(a2)>0等价为:
(a-2)2•g(a-2)+a4g(a2)=(a-2)2-a4>0,
即(a2+a-2)(a2-a+2)<0,
∴a2+a-2<0,
解得-2<a<1,
此时-2<a<1.
综上不等式的解集为(-2,1),
故选:A.
点评:本题主要考查不等式的解法,利用分段函数的表达式,进行讨论即可,考查学生的计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数g(x)=-
a2
3
x3+
a
2
x2+cx(a≠0)

(I)当a=1时,若函数g(x)在区间(-1,1)上是增函数,求实数c的取值范围;
(II)当a≥
1
2
时,(1)求证:对任意的x∈[0,1],g′(x)≤1的充要条件是c≤
3
4

(2)若关于x的实系数方程g′(x)=0有两个实根α,β,求证:|α|≤1,且|β|≤1的充要条件是-
1
4
≤c≤a2-a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(coswx,sinwx),
n
=(coswx,
3
coswx)
,设函数f(x)=
m
n
+1
且f(x)的最小正周期为2π.
(I)求f(x)的单调递增区间和最值;
(II)已知函数g(x)=
tanx-tan3x
1+2tan2x+tan4x
,求证:f(x)>g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
x2-2
(x≥2)
的导数为g′(x)=
x
x2-2
(x≥2)
,记函数f(x)=x-kg(x)(x≥2,k为常数).
(1)若函数f(x)在区间(2,+∞)上为减函数,求k的取值范围;
(2)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=1-2x , f[g(x)]=
1-x2
x2
 (x≠0)
,则f(0)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
x+2,x>-
1
2
-x-
1
2x
,-
2
2
<x≤-
1
2
2
,x≤-
2
2
,若g(a)≥g(
1
a
)
,则实数a的取值范围是
[-
2
,0)∪[1,+∞)
[-
2
,0)∪[1,+∞)

查看答案和解析>>

同步练习册答案